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Maintenance and transformation of
representational formats during working
memory prioritization

Daniel Pacheco-Estefan 1,10 , Marie-Christin Fellner1,10, Lukas Kunz 2,
Hui Zhang1, Peter Reinacher 3,4, Charlotte Roy5, Armin Brandt5,
Andreas Schulze-Bonhage 5, Linglin Yang6, Shuang Wang7, Jing Liu8,
Gui Xue 9 & Nikolai Axmacher 1,9

Visual working memory depends on both material-specific brain areas in the
ventral visual stream (VVS) that support the maintenance of stimulus repre-
sentations and on regions in the prefrontal cortex (PFC) that control these
representations. How executive control prioritizes working memory contents
and whether this affects their representational formats remains an open
question, however. Here, we analyzed intracranial EEG (iEEG) recordings in
epilepsy patients with electrodes in VVS and PFC who performed a multi-item
working memory task involving a retro-cue. We employed Representational
Similarity Analysis (RSA) with various Deep Neural Network (DNN) archi-
tectures to investigate the representational format of prioritized VWM con-
tent. While recurrent DNN representations matched PFC representations in
the beta band (15–29Hz) following the retro-cue, they corresponded to VVS
representations in a lower frequency range (3–14Hz) towards the end of the
maintenance period. Our findings highlight the distinct coding schemes and
representational formats of prioritized content in VVS and PFC.

Visual working memory (VWM) refers to the ability to store visual
information for a short period of time and to flexibly manipulate
this information according to task demands. One essential aspect
of VWM memory is prioritization, i.e., the ability to selectively
allocate attention to particular features or items depending on
behavioral or cognitive requirements. Influential theories have
proposed that WM prioritization entails the transformation of
maintained representations from a purely mnemonic to a task-
optimized state1,2. On a neurophysiological level, these accounts

predict that working memory prioritization involves a task-
dependent transformation of representational patterns in
executive control areas which can be disentangled from a mne-
monic coding scheme that maintains perceptual stimulus features
in sensory brain regions1,3–5. Here we set out to test this predic-
tion. We analyzed the representational format of VWM stimuli
using electrophysiological recordings in human epilepsy patients
implanted with electrodes in ventral visual stream (VVS) and/or
prefrontal cortex (PFC).
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There is now abundant evidence on the neural correlates of VWM
control processes in humans and animals6–10. Early studies focused on
prioritization of to-be-encoded items, using paradigms in which par-
ticipants were asked to selectively attend to particular items before
these itemswere shown (e.g., refs. 6,11–14).More recent investigations
often employed retrospective cueing paradigms, in which prioritiza-
tion is applied to information after its encoding into VWM10,15–18. These
studies revealed that prefrontal and parietal regions which underlie
the allocation of attention during perception are also engaged in the
prioritization of items in VWM2,7–9,19–22. Notably, a recent meta-analysis
observed selective responses to retro-cues but not to cues that allocate
attention prior to item encoding in VWM in various prefrontal areas1,23.
This literature suggests that prioritization affects VWM representa-
tions in the PFC, yet this prediction has not been tested experimentally
in humans.

The critical role of the PFC in WM prioritization is commonly
believed to depend on dynamic recurrent computations. A classical
model of WM suggests that persistent activity depends on reverbera-
tory excitation within a local recurrent neural network24,25. Computa-
tional studies have shown that recurrence is crucial for the selection
and integration of task-relevant features in the PFC26, the integration of
working memory and planning27, the flexibility of WM and the avoid-
ance of interference in the presence of competing representations28,
and—most importantly for our study—WMprioritization29,30. Recurrent
computations might be particularly relevant for selective attention to
specific features or items in WM because they enable the stabilization
of reverberating activity in attractor states that modulate the excit-
ability of assemblies which represent prioritized contents24,25,31. In
addition to their theorized role in PFC prioritization, recurrent com-
putations havebeenproposed tobe critical for informationprocessing
in the VVS during visual perception32,33, and for offline ‘generation’ of
stimuli during visual imagery34. However, a specific role of recurrency
in the VVS for VWMmaintenancehas not been previously investigated.

In addition (and possibly related) to the relevance of recurrent
computations, theories have emphasized the important role of brain
oscillations for VWM, in particular for the prioritization process.
Oscillatory activity in the gamma frequency range (50–120Hz) is
thought to convey bottom-up information during VWM encoding,
while oscillations at beta frequency (20–35Hz) are supposed to pro-
vide top-down control over VWM contents4,35–38. The significance of
these oscillatory patterns has been validated experimentally in a series
of studies in macaques4,20,35. Furthermore, a recent study in humans
confirmed the crucial role of gamma-band activity (30–75Hz) for
conveying bottom-up information from lower-level visual areas to
regions processing higher-level information36. In addition to their role
in top-down control over WM content, several studies have now
associated beta oscillations with the reactivation of stimulus-specific
activity during the VWM prioritization process. Content-specific beta
activity has been shown to carry information about internalized task
rules39, stimulus categories40–42, scalar magnitudes43,44 and perceptual
decisions45; for review, see ref. 46. These studies highlight the role of
beta oscillations in encoding task-relevant stimulus properties.

In humans, intracranial EEG (iEEG) recordings in epilepsy patients
have been used to investigate the neurophysiological patterns
underlying content-specific memory representations. This research
has employed multivariate analysis techniques, such as pattern clas-
sification and representational similarity analysis (RSA), to identify
representations of specific stimuli47,48. Studies have demonstrated that
frequency-specific representations in the gamma, beta and theta
(3–8Hz) frequency bands contain item- and category-specific infor-
mation, playing a crucial role in episodic memory retrieval49,50. In
addition to identifying the relevant oscillatory frequencies that carry
representational content during visual perception and episodic
memory, recent iEEG studies have investigated the ‘formats’ of VWM
representations. This research employed deep neural networks

(DNNs) to investigate how different aspects of natural images are
represented in the brain during mnemonic processing. These studies
assume thatmnemonic representations require specialized circuits for
processing distinct aspects (or formats) of natural images, from low-
level sensory features to higher-level contents and conceptual/
semantic information51–56. Indeed, several studies assessed the differ-
ent representational formats during VWM encoding and maintenance
and demonstrated substantial transformations of VWM representa-
tions into a format that aligns with late layers of a convolutional
DNN57,58. While these results and methodological advancements have
provided valuable insights into the format of VWMrepresentations, no
study so far has investigated the representational transformations that
accompany VWM prioritization in humans. Thus, whether the prior-
itization of VWM representations involves a change in the repre-
sentational format of the stored content and distinct coding schemes
of attended (i.e., task-relevant) items is currently unknown.

Here, we leveraged the heuristic potential of DNNs as models of
visual representation, the flexibility of RSA, and the high spatio-
temporal resolution of iEEG to investigate this topic. We analyzed
electrophysiological activity from VVS and PFC while patients per-
formed amulti-item VWMparadigm involving a retro-cue. Participants
encoded a sequence of three images and were then prompted by a
retro-cue to maintain either one of these items or all items (Fig. 1A;
Methods). The objects belonged to six categories, each containing ten
exemplars (60 images in total). With the exception of the behavioral
data, we only analyzed activity during the single item condition in this
study, given our focus on the prioritization process. This experimental
design allowed us to evaluate how information about specific contents
is represented in the brain during initial encoding and how it is
transformed due to the retro-cue, both in terms of representational
formats and regarding the frequencies of brain oscillations in VVS (438
electrodes) and PFC (146 electrodes; Fig. 1B). We hypothesized that
frequency-specific representations would reflect bottom-up storage
and top-down information transfer, respectively, with a particular role
of gamma and beta oscillations4,35–38. Specifically, we predicted that
oscillatory PFC activity in the beta frequency range may reflect
representational transformations due to top-down control following
the retro-cue4. In addition, we expected recurrent convolutional
architectures to better explain representations than feedforward
DNNs during VWM maintenance25,28,32,33,59,60.

Results
Behavioral results
Successful prioritization in the single-item condition should result in
better performance than in themulti-item trials. Indeed, we found that
participants performed significantly better in single-item trials (pro-
portion correct trials: 0.8 ± 0.12) than in the multi-item condition
(0.75 ± 0.13; t(31) = 3.21, p =0.0031; Fig. 1C). This suggests that parti-
cipants followed instructions and benefited from prioritizing task-
relevant representations in the single-item trials.

Maintenance and transformation of category-specific
representations
We investigated the electrophysiological patterns supporting the
representation of category-specific information in VVS and PFC. As a
first approach, we assessed the presence of categorical representa-
tions, employing RSA and a simple model of category information
(Fig. 2A). We constructed an item-by-item representational similarity
matrix (RSM) reflecting the hypothesis that items of the same category
would elicit more similar patterns of brain activity compared to items
of different categories (Fig. 2A). We correlated this model RSM with
temporally resolved neural RSMs (windows of 500ms, overlapping by
400ms). Representational patterns included power values across
electrodes (16.85 ± 8.92 electrodes in VVS, 9.73 ± 11.1 in PFC; Mean ±
STD) and time points (5 time points of 100ms in each time window;
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Fig. 1D, Methods) and were analyzed separately in each of 52 different
frequencies between 3 and 150Hz. To determine the similarity
between feature vectors, we used Spearman’s Rho50,57.

Our simple category model revealed a marked presence of cate-
gorical information during encoding in the VVS. Thiswas observed in a
significant frequency cluster ranging from 3–120Hz that started
immediately after stimulus presentation and lasted for the whole
encoding period (0.8 s; p =0.001). In the PFC, we observed two clus-
ters of significant fit in the beta (17–28Hz; 200–800ms; p = 0.001) and
the theta frequency range (3–7Hz; 200–600ms; p = 0.044; Fig. 2B,
left). During maintenance, we did not observe any significant fits
betweenmodel and neural RSMs in either VVS or PFC (VVS: all p > 0.51;
PFC: all p >0.105; Fig. 2B, right).

The absence of fit of the category model during maintenance
might be attributed to a weakening of the representations during the
maintenance period—e.g., due to a decrease in signal to noise ratio—or
to a rapid transformation of activity patterns during encoding58. To
evaluatewhether transformed activity patterns fromencoding reoccur

during the maintenance period, we performed a category-specific
pattern similarity analysis (Methods). This analysis involved contrast-
ing correlations of items belonging to the same category with corre-
lations of items from different categories (Fig. 2C, top), both during
encoding (encoding-encoding similarity; EES) and between encoding
and maintenance (encoding-maintenance similarity, EMS; Fig. 2C,
bottom). Notably, while the category model can track the presence of
categorical representations at the level of the representational geo-
metry of our stimuli set, the EES and EMS analyses test for re-
occurrence of category-related neural activity patterns from different
encoding periods. This analysis was conducted in five conventional
frequency bands (theta, 3–8Hz; alpha, 9–12 Hz; beta, 13–29Hz; low-
gamma, 30–75Hz; high-gamma, 75–150Hz), with electrodes, time
points (including both matching and non-matching time points; see
Methods), and frequencies in each band as features.

We first analyzed the timing and temporal stability of repre-
sentations during encoding, using EES. Consistent with the results
observed in the category model analysis, the EES analysis revealed

Fig. 1 | Experimental procedure, electrode coverage, and behavioral results.
A Participants encodeda sequence of 3 images of natural objects andwere asked to
remember this content during two subsequent maintenance periods that were
separated by a retro-cue (M1 – retro-cue – M2). The cue prompted participants to
either selectively maintain items at particular list positions (single-item trials, “1, 2,
3” in the figure) or to maintain all items in their order of presentation (multi-item
trials, “All” in the figure). During the probe, six items were presented, which
included all encoded items and three exemplars from previously presented or
novel categories (Methods). The figure displays representative images very similar
to those shownduring the experiment, in compliancewith a CC BY license (https://
creativecommons.org/licenses/by/4.0/). B Electrode implantation included 438
electrodes in the ventral visual stream (VVS, N = 28 participants; top) and 146
electrodes in theprefrontal cortex (PFC,N = 16participants; bottom).Cortical areas
included in each region are highlighted in pink. C Behavioral performance was

significantly higher for single as compared to multi-item trials in our patient group
(paired t-test, two-sided, n = 32). D Left: Representational patterns in the RSA
analyses included neural activity across electrodes, time points (5 time points in
each 500ms window), and frequencies. Spearman correlations were computed in
windows of 500ms, incrementing in 100ms steps (middle). Analyses were per-
formed in individual frequencies in the 3-150Hz range in the model-based RSA
analyses, and within different frequency bands (theta, alpha, beta, low-gamma,
high-gamma) in the contrast-based analyses. Source data are provided as a Source
Data file. Image sources (A): Tree 1: https://www.istockphoto.com/en/portfolio/
YutthasartYanakornsiri; Tree 2: https://www.istockphoto.com/en/portfolio/
Coldimages; Robot 1 and 2: https://www.istockphoto.com/en/portfolio/Ociacia;
Hand: https://www.istockphoto.com/en/portfolio/Hanis; Planet: https://www.
istockphoto.com/en/portfolio/GeorgeManga. **p <0.01.
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prominent category-specific information during the encoding phase in
both VVS and PFC. In the VVS, this was observed in all frequency bands
(all pcorr < 0.005; Fig. 2D, first column). In the PFC, category-specific
information was found in the theta, beta and low-gamma frequency
bands (all pcorr < 0.01; Fig. 2D, third column). To examine the relative
timing of the effects in greater detail, we increased the temporal
resolution by shortening the sliding windows to steps of 10ms and
including all frequencies in the 3–150Hz range as RSA features. This
analysis demonstrated that categorical information reached the PFC
360ms after stimulus presentation, i.e., 290ms later than the VVS

(Fig. 2E). Indeed, a direct comparison of latencies showed significantly
higher EES in VVS than PFC starting 150ms after stimulus onset (pcorr =
0.007). Furthermore, in the majority of frequency bands category-
specific representations were most pronounced at matching time
points across trials (diagonal values in the EES analyses; Fig. 2D) and
did not generalize to other time periods, in line with theories on
dynamic coding5,57.

Next, we analyzed encoding-maintenance similarity during the
second maintenance period (EM2S) to investigate whether category-
specific representations established during encoding reoccurred after

Fig. 2 | Encoding and maintenance of category-specific representations.
A Model-based RSA. Representational similarity matrix (RSM) reflecting the
hypothesis that category information structures the representational geometry of
stimuli (left) were correlated with a time-series of neural RSMs (right) at each
individual frequency.B Fit of the categorymodel in the VVS and the PFC during the
encoding (left) and maintenance (right) period. Zero indicates the onset of image
presentation during encoding, and the onset of the presentation of the cue during
maintenance. C Contrast-based RSA. Top: Category-specific similarity was com-
putedby contrasting correlations between (different) itemsof the samecategory vs
items of different categories. Bottom: Similarity was calculated between the
encoding periods of different trials (encoding-encoding similarity, EES), between
the encoding and the maintenance periods of different trials (encoding-main-
tenance similarity, EMS), and between maintenance periods of different trials
(maintenance-maintenance similarity, MMS). Note that two types of EMS analysis
were conducted for the first and second maintenance periods (EM1S, see Supple-
mentary Fig 2, and EM2S). D EES and EM2S analyses: Category contrasts for five
frequency bands during encoding andmaintenance in VVS (left) and PFC (right). In
the EES plots, zero indicates the onset of image presentation on both time axes. In

the EM2S plots, zero indicates image onset during encoding and retro-cue onset
during maintenance, respectively. Significant differences between same and dif-
ferent categories were assessed using two-sided paired t-tests at each time bin.
Significant time periods surviving correction for multiple comparisons using
cluster-based permutation statistics are outlined in black. E Category specificity
analysis at higher temporal resolution showing different latencies of effects in VVS
(red) and PFC (black). Each line shows the time course of within minus between
category correlations in each region (Mean ± S.E.). Horizontal bars indicate time-
periods when EES values are significantly different from zero in each region, and
significantly different between the two regions (green). Please note that t-maps in
B and D have the same color scale, indicated in the color bar at the right of each
panel. Source data are provided as a Source Data file. Images in C are published in
compliance with a CC BY license (https://creativecommons.org/licenses/by/4.0/).
Sources: Robot 1 and 2: https://www.istockphoto.com/en/portfolio/Ociacia; Hand:
https://www.istockphoto.com/en/portfolio/Hanis; Planet: https://www.
istockphoto.com/en/portfolio/GeorgeManga. Tree 1: https://www.istockphoto.
com/en/portfolio/YutthasartYanakornsiri; House: https://www.istockphoto.com/
en/portfolio/SittidhetJoollasawok. ***p <0.001; **p <0.01; *p <0.05.
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the presentation of the retro-cue. In the EM2S analysis, we observed
significant reoccurrence of category-specific information in all fre-
quencybands in the VVS (allpcorr < 0.025). These effectswere transient
and most pronounced within the first 2 seconds after the retro-cue
(Fig. 2D, second column). In contrast, we did not observe reoccurrence
of category-specific information in the PFC in any frequency band (all
pcorr > 0.19; Fig. 2D, fourth column), suggesting a transformation of
representational formats in this region.

In several additional control analyses, we comprehensively char-
acterized the representational formats in VVS andPFC (Supplementary
Fig 1), evaluated the presence of representations in the Maintenance 1
period (EM1S analysis; Supplementary Fig 2 and Supplementary
Note 1), investigated the representation of individual exemplars during
encoding and maintenance (Supplementary Fig 3 and Supplementary
Note 2), and evaluated differences in performance and neural repre-
sentations for items encoded in different positions during encoding
(EES, EM2S and MMS analyses; Supplementary Fig 4 and Supplemen-
tary Note 3).

Together, these results show the formation of category-specific
representations in both VVS and (later) in PFC during encoding, but
reoccurrence of encoding patterns during maintenance in the
VVS only.

Representational formats of category-specific representations
Our findings presented thus far indicate maintenance of category-
specific representations from encoding in the VVS that was not
observed in the PFC. The absence of an effect in the PFC may be
attributed to a transformation of VWM representations driven by the
prioritization process. Indeed, recent behavioral61, neuroimaging53 and
iEEG studies57,58 established a crucial role of transformed representa-
tional formats, particularly abstract representational formats devoidof
specific sensory information, in VWM maintenance. Based on these
insights, we hypothesized that the PFC might represent stimuli in a
representational format devoid of low-level sensory information that
maps to deep DNN layers during the prioritization period.

To evaluate this hypothesis, we employed different deep neural
network (DNN) architectures. First, we used the feedforward DNN
‘AlexNet’62 that has been extensively employed to characterize neural
representations of natural images during perceptual and mnemonic
processes36,57,58,63–70. Additionally, we applied two recurrent DNNs, the
BL-NET and the corNET-RT. The BL-NET consists of seven convolu-
tional layers which include lateral recurrent connections and has pre-
viously been applied to predict human behavior, specifically reaction
times, in a perceptual task71. The corNET-RT has a relatively shallow
architecture compared to similarly performing networks for image
classification and has been designed to model information processing
dynamics in the primate VVS72. Similar to the BL-NET, corNET-RT
exhibits recurrent dynamics that propagate within (but not between)
layers. All 3 DNNs represent stimuli in various representational for-
mats, ranging from low-level visual features in superficial layers to
higher-level properties in deep layers. While AlexNet processes sti-
mulus features in a single feedforward pass, the lateral recurrent
connections of BL-NET and corNET-RT generate temporally evolving
time-series of stimulus representations in each layer, thus capturing
core properties of recurrent dynamics during WM processing in the
PFC. The number of recurrent passes is fixed to 8 time-points in BL-
NET, while the corNET-RT model exhibits layer-specific recurrent
passes that range from 2 to 5 time points (see Methods). Following
previous studies, and in order to ensure that the networks achieved
stable representations of our images in each layer, we focused on the
RSMs at the last time-point of each layer73.

We first characterized stimulus representations in different layers
of AlexNet. We constructed RSMs from DNN representations by
computing the similarities between all unit activations in each layer for
all pairs of images (see refs. 57,58; Fig. 3A, top). For visualization, we

projected the data into two-dimensional spaceusingMultidimensional
Scaling (Fig. 3A, bottom). To evaluate representational changes
throughout theDNN,we correlated the RSMs between different layers.
RSMs were most similar among the convolutional layers 2–5 and
among the fully connected layers 6-7, while the input layer 1 and the
output layer 8 exhibited the most distinct representational patterns
(Fig. 3B). We computed the Category Cluster Index (CCI; see
refs. 74,75), defined as the difference in average distances of stimulus
pairs from the same category vs. stimulus pairs from different cate-
gories (Fig. 3C). CCI takes a value of 1 if clusters are exclusively built by
stimuli from the same category and approaches 0 if the representa-
tional geometry shows no categorical organization. Using permutation
statistics (i.e., label shuffling), we observed that CCI values were sig-
nificantly higher than chance in all layers of the network (all
pcorr = 0.008, Bonferroni corrected for the 8 layers). Notably, we
observed a four-fold increase inCCI scores from the first (CCI = 0.11) to
the last layer (CCI = 0.46) of the AlexNet (Fig. 3C). This effect was
explained by both an increase of within-category correlations (average
slope of linear fit across layers = 0.046; p =0; Supplementary Fig 5, top
left), and a decrease of between-category correlations across layers
(average slope across layers = −0.008; p =0; Supplementary Fig 5,
top right).

We next set out to evaluate the similarity between stimulus
representations in AlexNet and neural representations in VVS and PFC.
In order to characterize the frequency profile of reactivations, we
performed a frequency-resolved analysis of fits between neural and
DNN representations: We constructed RSM time-series for every fre-
quency independently and grouped them into a time-frequency map
of model fits (Methods). In the VVS, we found that representational
geometries during encoding were captured by network representa-
tions in all layers in the 3–75Hz range (all pcorr < 0.008); Fig. 3D, top
row). In layers 4 and 6–8, this effect extended into the high-gamma
frequency range. Similar to the results observed in the categorymodel
analysis (Fig. 2B),wedid not observe anymatching betweenneural and
AlexNet representations during the maintenance period (all
pcorr > 0.056; Fig. 3E). In the PFC, we did not observe any significant fit
during either encoding (all p > 0.064; Fig. 3D, bottom row) or main-
tenance (all p >0.168; Fig. 3F).

Taken together, these results show that representations in the
AlexNet are alignedwith encoding representations in VVS but not PFC.
Importantly, during the maintenance period neither VVS or PFC
representations showed a significant fit with representations in the
AlexNet network, suggesting that the format of prioritized VWM
representations cannot be explained by feedforward DNNs.

We thus employed the recurrent neural networks BL-NET and
corNET-RT to characterize representational formats in VVS and PFC.
We first assessed the temporal evolution of network representations in
the different layers of BL-NET and correlated the layer-wise RSMs
between successive time points (Methods). In all layers, representa-
tions changed most prominently between intervals 1–2 and least
between intervals 7–8 (Fig. 4A). In layers 2 to 7, representations
remained largely constant following time step 3, while the first layer
showedmore substantial dynamics until the last time interval (Fig. 4A).
Directly comparing the representations between the initial (1st) and
the final (8th) time points separately for each layer revealed larger
changes in the first two layers and substantially smaller changes in
layers 3–7 (Fig. 4B, C). Similar to the AlexNet, CCI values were sig-
nificantly higher than chance in all layers (all p =0.007, Bonferroni
corrected for 7 layers), and we observed a fourfold increase of CCI
values from the first (CCI = 0.07) to the last layer (CCI = 0.40) of the
network (Fig. 4D). Contrary to the AlexNet, the increases in CCI in the
BL-NET network were only due to a decrease in between-category
correlations (average slope of linear fit across layers = −0.06; p =0;
Supplementary Fig 5, middle right), while the within-category corre-
lations did not change across layers (average slope of linear fit across
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layers = −0.00062; p = 0.72; Supplementary Fig 5, middle left). Fur-
thermore, BL-NET between-category correlations decreased sig-
nificantly more across layers than AlexNet between-category
correlations (Alexnet vs. BL-NET slope difference = 0.1061; p =0).

Together, these results show that the BL-NET network represents
low-level featuresmore dynamically than high-level visual features and
that it clusters categorical information more strongly in deep than
superficial layers. Contrary to the AlexNet network, this clustering is
exclusively due to a reduction of between-category correlations rather
than an increase in within-category correlations across network layers.

We next compared neural and BL-NET representations, focusing
on the RSMs at the last time-point of each layer (Fig. 4E). During
encoding, results were similar to those in the AlexNet analysis: Net-
work representations of all layers matched VVS representations for a
wide range of frequencies between 3 and 75Hz (pcorr = 0.007; Fig. 4F),
and these extended into the high-gamma range (i.e., until 110Hz) in
layer 7. No significant correlations were observed in the PFC (all
pcorr > 0.263; Fig. 4G). During maintenance, no significant fits were
observed in the VVS following the retro-cue, again consistent with the
AlexNet analysis. Interestingly, however, we observed a significant
matching of VVS representations in the theta/alpha frequency range
(3–14Hz) with BL-NET representations in layers 4 (pcorr = 0.035), 5

(pcorr = 0.035) and 6 (pcorr = 0.014). These effects occurred in a late
maintenance time period from 2.1 s to 3.2 s, close to the presentation
of the probe (Fig. 4H, top row). Critically, in the PFC, we observed a
significant fit between neural and network RSMs following presenta-
tion of the retro-cue, i.e. time-locked to the prioritization process. This
effect started 200ms after the onset of the retro-cue and lasted for
800ms; It was specifically observed for the last layer of the BL-NET
(final layer: pcorr = 0.021; all other layers: pcorr > 0.43), and related to
neural representations in the beta frequency range (15–29Hz; Fig. 4H,
bottom row).

The specific alignment of the representational geometry of PFC
activity with the last layer of BL-NET during the prioritization period
suggests that the format of representations has been transformed in
this region—from a purely categorical format during encoding into a
format that incorporates distinctions among stimuli between cate-
gories during maintenance. To corroborate this transformation and
characterize the representational formats observed in the PFC more
comprehensively, we performed several additional analyses. First, we
tested whether the average pairwise neural correlations differed
between encoding and maintenance. Higher correlations of items
during maintenance may point towards clustering of representations,
while lower correlations would reflect the opposite, i.e.

Fig. 3 | Analysis of representational formats using a feedforward deep neural
network. A Top: Representations in the feedforward network AlexNet. Repre-
sentational Similarity Matrices (RSMs) reflecting pairwise correlations of unit acti-
vations in each layer of the network. Bottom: 2D Multidimensional Scaling (MDS)
projections of RSMs at each layer, color-coded according to categories.
B Representational consistency plot showing pairwise correlations (Spearman’s
rho) of RSMs at each network layer. C Within-category, between-category and
within-category vs. between-category correlations (i.e., Category Cluster Index,
CCI) as a function of network layer. D Top: Correlations between RSMs from the
DNN and neural data, for each AlexNet layer and each encoding time-frequency

window in the VVS. Each time-frequency plot shows the correlation values of
representations in one particular layer to neural representations. Clusters outlined
in black indicate time-frequency periods where correlation values are significantly
higher than zero at the group level (two-sided t-tests, Bonferroni corrected for 8
layers). Bottom: Same analysis for PFC data. Time zero in all panels indicates the
onset of stimulus presentation E No matching of VVS RSMs with AlexNet RSMs
during the maintenance period. Time zero indicates the onset of the cue. F Same
analysis as in E for the PFC data. Color scale of all t-maps in F and G is indicated at
the right of each panel. Source data are provided as a Source Data file. ***p <0.001.
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representations in a more widely spread representational space. Sec-
ond, we analyzed the variance of correlations during encoding and
prioritization. Higher variances would reflect less uniform (i.e., more
distinctly organized and thus lower dimensional) distributions of
items, while lower variances would correspond to an opposite pattern.
We performed both analyses separately for items of the same category
(within-category correlations) and items of different categories
(between-category correlations). We found a trend for higher average
between-category correlations during maintenance as compared to
encoding (t(14) = −2.12, p =0.053), and no significant differences in the
average same-category correlations (t(14) = −0.185, p =0.856). More-
over, the variance of between-itemcorrelations decreased significantly

from encoding to maintenance, both for items from different cate-
gories (t(14) = 5.87, p = 4.05e−05) and from the same category
(t(14) = 5.37, p = 9.89e−05). We next compared the dimensionality of
RSMs during encoding and maintenance. We projected the data in
various dimensions using Multidimensional Scaling (MDS), and com-
puted the stress of theMDS projections. Stress indicates the goodness
of fit of a particular projection, and thus lower stress values during
encoding or maintenance would indicate lower-dimensional repre-
sentations during that time period. We observed that stress values
were systematically lower during encoding as compared to prior-
itization in a cluster of significant dimensions (from 4 to 33 dimen-
sions; p = 0.0148; Supplementary Fig 1A). Taken together, these results

Fig. 4 | Analysis of representational formats using the BL-NET network.
A Representational consistency at each time interval of the BL-NET network was
computed by correlating representations formed at successive time points. Each
curve represents one layer of the network, color-coded from early (blue) to deep
layers (pink). B Two-dimensional projections of the first and last time point of each
layer in the BL-NET network showing greater representational distances in the first
layer than in all other layers. C Pairwise correlations of RSMs corresponding to the
first (left) and last (right) time points in each layer of BL-NET. D Within-category,
between-category and within-category vs. between-category correlations (i.e.,
Category Cluster Index, CCI) for each layer of BL-NET (last time point). E RSMs and
corresponding MDS projections for the last time point of all BL-NET layers. In the
MDS plots, items are color-coded according to category. F Correlations between

BL-NET RSMs (last time point in each layer) and neural RSMs during encoding in
VVS. Outlined clusters indicate time-frequency periods where correlation values
are significantly higher than zero at the group level (two-sided t-tests, Bonferroni
corrected for 7 layers). G Same analysis as in F for the PFC. H Same analysis as in
F for themaintenance period in the VVS (top) and PFC (bottom). In theVVS, BL-NET
representations in layers 4, 5, and 6 matched representations in the theta/alpha
frequency range (3-14Hz) prior to the probe. In the PFC, BL-NET representations in
the last layer matched representations in the beta band (16–29Hz) following pre-
sentation of the retro-cue. Color scale of all t-maps in F, G andH is indicated at the
right of each panel. Source data are provided as a Source Data file.
***p <0.001; *p <0.05.
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indicate a change from a purely categorical representation during
encoding to a representation that matches the fine-grained archi-
tecture of the BL-NET during prioritization: PFC representations occur
in a smaller representational space, occupy less clustered regions in
this space, and rely on a higher-dimensional neural code. Thus, our
results point to a transformation of the representational format of PFC
activity from encoding to maintenance.

We next investigated the fit of the BL-NET and the AlexNet net-
works during the prioritization period separately for within-category
and between-category correlations.We observed a significant fit of the
between-category correlations of RSMs from the BL-NET and neural
data in the PFC (t(14) = 3.69, p = 6.76e−05; Supplementary Fig 1B),
while this was not true for the AlexNet (t(14) = 1.61, p =0.13). None of
ourmodels could explain the structure of within-category correlations
(BL-NET: t(14) = 0.42, p =0.67; AlexNet: t(14) = −0.18, p =0.86; Sup-
plementary Fig 1B). The results of the same analysis performed during
encoding confirmed that neither BL-NET nor AlexNet are goodmodels
of activity in the PFC during this time period (BL-NET within-category
correlations: t(14) = −0.37, p = 0.71; BL-NET between-category correla-
tions: t(14) = −1.84, p =0.086; AlexNet within-category correlations:
t(14) = 0.17, p =0.86; AlexNet between-category correlations:
t(14) = −1.31, p = 0.21). These results demonstrate that the fine-grained
structure in PFC that is captured by the BL-NET model is due to the
geometry of between-category correlations—i.e., that the BL-NET cor-
responds to the relative representational distances of individual
exemplars to exemplars of other categories.

In additional control analyses, we investigated the functional
relevance of representations in VVS and PFC during the maintenance
period (Supplementary Fig 6), compared the fits of the BL-NET, Alex-
Net and the category model in VVS and PFC (Supplementary Note 4;
Supplementary Fig 7 and Supplementary Fig 8), dissociated the
representational formats of the category model and the BL-NET
through simulations and analyses conducted in individual participants
(Supplementary Note 5; Supplementary Fig 8 and Supplementary
Fig 9) and evaluated the fits of the BL-NET in the PFC with a variant of
this network trained with a recently released dataset of images
(Ecoset76; Supplementary Fig 10).

In our final analysis, we employed the corNET-RT model to
account for VVS and PFC representations. Consistent with the BL-NET
analyses, we first evaluated the representational consistency across
successive time points in each layer of the network. The final layer (IT)
showed the lowest correlation across consecutive time points com-
pared to all other recurrent passes in the network (Rho =0.78; note the
first recurrent pass in IT is the fourth overall pass in the network,
Methods). This demonstrates that contrary to the BL-NET, corNET-RT
represents stimuli more dynamically in its deepest layer. In addition,
we observed that representations in layers V2 and V4 clustered toge-
ther in representational space, while representations in V1 and IT were
segregated (Fig. 5B, C). Categorical clustering of representations was
found in all layers, as evidenced by significant CCI scores in each layer
and at each time point (allpcorr > 0.004; Fig. 5D). Similar to BL-NET and
contrary to AlexNet, we observed a prominent increase in CCI scores
across layers, which wasmostly due to a decrease in between-category
correlations (average slope across layers = −0.14; p =0; Fig. 5D and
Supplementary Fig 5). However, within-category correlationswere also
reduced across network layers (average slope across layers = −0.02;
p = 1.63e−11; Fig. 5D and Supplementary Fig 5).

We compared corNET-RT RSMs to neural representations, focus-
ing on the last time point in each layer, again consistent with the BL-
NET analysis (Fig. 5E). During encoding, we found a significant match
of VVS representations across a wide range of frequencies with
corNET-RT representations in all layers (3–105Hz; all pcorr < 0.004;
Fig. 5F, top row). No significant correlations were found in the PFC (all
pcorr > 0.053, Fig. 5F, bottom row). During the maintenance phase,
corNET-RT representations in ITmatched those in the VVS towards the

end of the maintenance period, specifically in the theta-alpha fre-
quency range, consistent with the results observed in the BL-NET
analysis (6–11 Hz; pcorr = 0.044; Fig. 5G, top row). Critically, we again
observed a significant match of corNET-RT representations in IT with
PFC representations time-locked to the presentation of the retro-cue
and in thebeta band (15–29Hz;pcorr = 0.016; Fig. 5G, bottom row). This
effect lasted for 500ms, similar to the results observed in the BL-NET
analysis. In addition, we observed a significant correlation with
representations in V1 (pcorr = 0.036).

We performed control analyses using parameter-matched ver-
sions of our recurrent architectures to evaluate the effect of recur-
rency, while isolating other possible confounding variables
(Supplementary Note 6). Results suggested that recurrent computa-
tions are indeed crucial for tracking cognitive representations in PFC,
because the fit observed with the recurrent networks could not be
found in any of the feedforwardmodels we tested. They also show that
recurrency may play a relatively less prominent role in the VVS (Sup-
plementary Note 6).

Taken together, these results show that PFC representations fol-
lowing the retro-cue matched those in two recurrent neural network
architectures (theBL-NET and the corNET-RT) but not thoseof a purely
feedforwardnetwork (theAlexnet), and that these effectswere specific
to the beta-frequency range and most prominent for late layers of the
networks. VVS representations did not show correspondence with
representations in recurrent networks following the retro-cue, but
prior to the probe.

Discussion
Our study aimed to unravel representational formats and neural cod-
ing schemes in sensory and executive control regions during WM
prioritization. Specifically, we analyzed the impact of WM prioritiza-
tion on stimulus-specific activity patterns in VVS and PFC and assessed
their representational formats using feedforward and recurrent DNN
models of natural image processing. The VVS exhibited pronounced
category-specific representations during encoding which were rein-
stated during the maintenance period, reflecting a shared (or ‘mne-
monic’) coding scheme across both experimental phases. The PFC
exhibited robust category-specific representations during WM
encoding as well, but did not show reinstatement of encoding patterns
during themaintenance period. Subsequent in-depth analyses showed
that this lack of reinstatement in PFC was not due tomemory decay or
reduced signal to noise ratio, but due to a transformation of repre-
sentations between different task-dependent formats, in line with a
dynamic ‘prioritization’ coding scheme: Representations in PFC cor-
responded to a simple categorical model during encoding, but mat-
ched only the deepest layer of a recurrent DNN following retro-cue,
suggesting a prioritized format in which high-level visual features of
images are preponderant. This shift was also reflected at the level of
the neurophysiological substrates of WM representations, since PFC
representations during encoding were observed in theta, beta and
gamma frequency bands but exclusively in beta frequency oscillations
during the retro-cue. Taken together, these results demonstrate that
WM prioritization relies on a distinct recruitment of specific task-
depend representational formats in the PFC.

Recent investigations showed a transformation of visual repre-
sentations from perceptual to abstract formats during VWM
encoding57,58. While representations in these studies were based on
patterns across the entire brain, we here focused on representations in
two brain regions that are critical for VWM storage and control,
respectively: VVS and PFC. We note that our initial RSA analysis of
category representations (Fig. 2B) could not explain representations
during the maintenance period in either of these regions. The EMS
analysis (Fig. 2D), however, revealed a distinct set of results in VVS and
PFC: While encoding activity patterns reoccurred during the main-
tenance period in the VVS, this was not the case in the PFC. In the VVS,
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representations towards the end of the maintenance period matched
representations in intermediate and deep layers of two recurrent DNN
architectures (BL-NET and corNET-RT), suggesting a transformation
during encoding from a purely ‘categorical’ format into a format that
incorporates high-level visual and semantic relationships among sti-
muli. Thus, despite a relative stability of neural activity patterns (as
revealed by the EMS analysis), their representational geometry chan-
ges and eventually results in less categorical representations during
the maintenance period.

By contrast, in the PFC, encoding activity patterns did not reoccur
during the maintenance period, suggesting a more pronounced
transformation in this region; however, neural representations fol-
lowing the retro-cue matched representations in deep layers of two
recurrent DNN architectures. Notably, in the VVS, all representational
signatures that were observed during the second maintenance period
(corresponding to the deeper layers of the two recurrent networks)
were already apparent during encoding, and this likely explains the

significant encoding-maintenance similarity (EM2S) in this region.
Thus, maintenance in VVS corresponds to a partial and selective re-
appearance of encoding formats, corresponding to a ‘mnemonic’
coding scheme. By contrast, in the PFC, the representational sig-
natures that were observed during maintenance did not already occur
during encoding, and thus the PFC does not show such a mnemonic
coding scheme but exhibits amore profound transformation.We refer
to the format of PFC representations after the retro-cue as ‘prioritized’.

Our results provide a comprehensive description of the repre-
sentational transformation observed in the PFC during the prioritiza-
tion period, from a purely categorical to a less categorical and higher-
dimensional format that specifically maps with the BL-NET and
corNET-RT but not with other DNNmodels. In detailed analyses of the
geometry of PFC representations during encoding and maintenance,
we found that PFC representations occur in a smaller representational
space during the prioritization period, occupy less clustered regions,
and rely on a higher-dimensional neural code. Notably, these

Fig. 5 | Analysis of representational formats using the corNET-RT network.
A Representational consistency at each time interval of the corNET-RT network.
Note that in this architecture, different layers have different numbers of recurrent
passes, and deep layers do not receive input until activity has propagated from
early layers. Each curve represents one layer, color-coded from early (blue) to deep
(pink). BMDS projections of first (circle) and last (triangle) time point in each layer
show relatively higher temporal dynamics in layer IT (output) compared to the
other layers. MDS results have been scaled for visualization.C Pairwise correlations
of RSMs corresponding to the first (left) and last (right) time points in each layer of
corNET-RT.DWithin-category, between-category andwithin-category vs. between-
category correlations (i.e., CategoryCluster Index, CCI) at each layer of the network
(final time point). E RSMs (top) and corresponding MDS projections (bottom) for
each layer of the corNET-RT network (final time-point). Items are color-coded by

category. F Correlations between corNET-RT RSMs (last time point in each layer)
and neural RSMs during encoding in VVS (top) in the 3–150Hz frequency range.
Colors indicate resulting t-maps in the comparison of group-level correlation
values against zero (two-sided t-tests). Significant regions after multiple compar-
isons correction are outlined in black (Bonferroni corrected for 4 layers). G Same
analysis as in F for the maintenance period. Top: A match between network and
neural representations was observed in the VVS in a late period, close to the pre-
sentation of the probe, in the IT layer. Bottom: In the PFC, correlations were sig-
nificant with representations in the beta frequency range (15–29Hz) following the
onset of the retro-cue with both V1 and IT layer. Color scale of all t-maps in F and
G is indicated at the right of each panel. Source data are provided as a Source Data
file. ***p <0.001; *p <0.05.
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differences were mostly observed for the between-category correla-
tions (Supplementary Fig 1), whose structure cannot be explained by
the categorymodel. Considered together with the lack of EM2S in PFC,
these results point to a transformation of the representational format
of PFC activity from encoding to maintenance, which is particularly
due to a transformation of the geometry of the between-category
correlations.

An important difference between VVS and PFC relates to the time
period at which representationsmatched those from a recurrent DNN:
directly following the retro-cue in PFC, but prior to the probe in the
VVS and thus in preparation for the response. This suggests that
maintenance in the two different regions likely serves different
functional roles.

What could be the functional role of the transformation of
category-specific representations in the PFC? Our data is consistent
with a capacity-limited view of WM which would benefit from com-
pressed stimulus representations in this region, while still maintaining
high-level visual properties of images. This notion has been recently
supported by behavioral61 and neuroimaging53 studies. In particular,
ref. 61. demonstrated that semantic aspects of images are selectively
prioritized during WMmaintenance in a multi-itemWM task, while no
selective storage of abstract features of images is present in single-
item tests. This fits to our findings in the VVS that contained both
perceptually detailed and abstract representations during main-
tenance of single items, while we additionally found high-level visual
representations in the PFC. In the fMRI study of ref. 53, representa-
tional abstraction was observed in parietal and visual cortices, but not
in prefrontal regions. The differences between our results and those of
ref. 53. might relate to the particular stimuli employed (natural images
with semantic content versus low-level visual features), and to our use
of a paradigm involving prioritization, which preferentially engages
the PFC1,23.

Prioritized information in PFC was specifically detected in the
15–29 Hz frequency range, i.e., within the beta band (13–29 Hz).
Previous studies showed a prominent role of prefrontal beta oscil-
lations for top-down control of information in WM4,35, and oscilla-
tory activity in the beta range has also been associated with
transient task-dependent activation of stimulus-specific informa-
tion during WM maintenance46. Our results in PFC are well con-
sistent with these interpretations: The representations we observed
are content-specific and locked to the presentation of the retro-cue,
which is when the prioritization process takes place. This aligns with
previous studies that have reported stimulus-specific activity in the
beta range during WM maintenance (e.g., ref. 45; see ref. 46. for
review). In contrast to standard delay tasks where beta modulations
occur late in the WM delay period43,45, our study demonstrates brief
and cue-locked effects, consistent with previous retro-cue
paradigms77. Our findings are also consistent with the widely
accepted role of the PFC in the top-down control of information
stored in other brain regions, in line with previous studies on both
episodic andworkingmemory78. Indeed, activity in the PFC has been
linked to task-dependent executive control over specific contents in
several studies (for a review, see ref. 79). This could be achieved by
modulating the activation state of distributed perceptual and
mnemonic representations78, for instance through PFC connectivity
with the VVS80. The transient beta-frequency reactivation we
observed in the PFC is suggestive of a top-down signal prompted by
presentation of the cue that might affect information processing in
downstream regions81. Further studies are required to investigate
this possibility. Nevertheless, our results confirm previously
untested views of PFC functioning by demonstrating its engage-
ment in the transformation of VWM representations during VWM
prioritization.

DNNs are increasingly used in cognitive neuroscience to char-
acterize the representational formats and temporal dynamics of

perceptual andmnemonic representations in the brain.While different
feedforward and recurrent architectures have been applied in the
domain of vision, resulting in a wide variety of models employed to fit
neural data (e.g., refs. 32,33,59,65,67,82), this approach has only star-
ted to be employed in memory research. Pioneering investigations
have applied the feedforward neural network AlexNet to study repre-
sentational formats during visual working memory in humans57,58.
Notably, these studies did not investigate the representational formats
during WM maintenance but focused solely on the encoding period.
While theoretical and experimental considerations have strongly
argued for the use of recurrent architectures in the domain of visual
perception33,60,83, they have so far not been applied to memory
research. The use of recurrent architectures in the context of working
memory is particularly important given the relevance of recurrent
computations for PFC processing26,84 and WM functions in
general27,28,30,85. In our study, we tested a feedforward and two recur-
rent models in their ability to predict representational distances in
human iEEG data. During encoding, both types ofmodels captured the
representational geometry of stimuli across all layers and a wide range
of frequencies in the VVS, while no fits were observed in the PFC
(Figs. 3, 4 and 5). During maintenance, however, the two architectural
families strongly differed in their fit to the neural data: the AlexNet was
unable to capture representations in either region, while BL-NET and
corNET-RTmatched representations in bothVVS andPFC (Figs. 4H and
5G). Control analyses using parameter-matched versions of the BL-NET
without recurrency indicated that recurrent computations are indeed
crucial for tracking cognitive representations in PFC, while they appear
to play a relatively less critical role in the VVS (Supplementary Note 6).
Together, these results demonstrate that only recurrent architectures
can explain the representational geometry of stimuli during VWM
prioritization in PFC, while a feedforward architecture and a simple
model of category information do not provide good fits.

What are the differences in the representational geometries of
AlexNet, BL-NET and corNET-RT that can explain the different fits to
the neural data we observed? We thoroughly characterized within-
category, between-category and within- vs. between-category corre-
lations (i.e., CCI) in all three architectures to investigate their differ-
ences in stimuli representation. We found that all networks
represented increasingly category-specific information across layers,
as assessed by prominent increases in CCI, yet this was achieved
through different representational changes.While theAlexNet showed
both an increase in within-category correlations and a decrease in
between-category correlations, the recurrent models only showed
decreases in between-category correlations (Supplementary Fig 5),
suggesting that recurrence particularly supports distinct representa-
tions of different categories. Again, further studies are needed to
unravel the possible neurophysiological basis and cognitive function
of these representational transformations.

Computational models of WM have proposed that prioritization
requires a transformation of the neural space of activity in which the
items are represented, involving, for example, a rotation or “flip” of the
format of prioritized content in neural activity space29,30. Thesemodels
have recently received empirical support from studies in monkeys
(e.g., ref. 86), suggesting an efficient neural code that organizes and
structures neural representations during the prioritization process.
Consistently, a recent iEEG study in humans demonstrated a role of
PFC in resolving cognitive interference between competing sensory
features by transforming their representational population geometry
into distinct neural subspaces to accommodate flexible task-
switching87. Our work contributes to this literature by establishing
that the PFC not only supports a transformation of the representa-
tional geometry of stimuli but also a differential representation of
particular visual formats in the context of VWM prioritization. In par-
ticular, we argue that the degree of matching to RSMs derived from
DNNs is of heuristic value because these models have previously been
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shown to match representations during sensory processing and have
been widely applied to analyze representational transformations dur-
ing various cognitive tasks (see ref. 83).

It has been recently proposed that the selection of network
training sets critically influence the matching of DNN and neural
representations, and that this influence may be more important than
specific architectural constraints88. For this reason, in our study we
employed two different datasets of images (ImageNet and Ecoset),
which provided consistent results (Supplementary Fig 10). Other lim-
itations remain, however: First, the BL-NET and corNET-RT networks
were not trained to memorize stimuli but to solve the task of image
classification, which may be argued to limit their value as models of
WMrepresentation. However, wenote that the use of networks trained
in a lower dimensional task objective, i.e., image classification, to
model cognitive representations embedded in a higher-level cognitive
process, i.e., VWM prioritization, has received some theoretical sup-
port. Indeed, representational accounts ofmemory have argued that it
is not the cognitive process (e.g., memory versus perception) that
defines representations, but rather the content that any given cogni-
tive process requires. Indeed, regions representing particular content
in the brain (e.g., low-level visual features in early visual regions) are
involved in the representation of these features irrespective of the
cognitive process in which they are engaged89–91. Since the VVS plays a
role both during object recognition and VWM for these objects, it is
relevant to investigate the representational format of items during
both processes, and DNNs are arguably strong tools to capture these
formats58,92. Beyond these theoretical considerations, we underscore
the widespread practice in our field of using networks pretrained in
particular tasks to characterize representations formed in different
tasks. Previous studies have employed the AlexNet network to inves-
tigate the representational formats of representations during both
VWM and long-term memory57,58,92. A similar trend is observed in nat-
ural languageprocessing, where languagemodels trained in the taskof
next word prediction have been applied to model language-related
brain responses more broadly93–97.

A second limitation of the models we employed relates to their
architecture: BL-NET and corNET-RT do not include top-down con-
nections but only lateral connectivity, and thus cannot account for
PFC-VVS interactions. In future work, novel architectures should be
employed that mimic brain connectivity more accurately at least at a
high-level of description (i.e., containing top-down as well as within-
layer connections). Finally, while we decided to focus on the prior-
itization process and the single-item trials in this study, we aim to
further investigate the representationofmultiple items in the future. A
promising avenue for this purpose is the use of sequential recurrent
convolutional networks that receive multiple consecutive images as
input and can be employed to track multi-item representations
(e.g., ref. 98).

We note that the different models we employed (e.g., BL-NET,
AlexNet, category model) do not only represent different hypotheses
about how the brain represents visual information, but they also differ
in the aspects of the representational geometry they can model. For
instance, the category model only codes binary information about
category membership, while the DNNs’ deep layers in addition reflect
more subtle differences among stimuli which encode high-level visual
properties of images. The category model is by definition agnostic to
any structure in the within-category and between-category correla-
tions (which are all modelled identically, with ones and zeros), while
the DNNmodels propose a very specific geometry for these two types
of relationships. Thus, fitting the two models to neural data provides
complementary information regarding the geometry of representa-
tions. Notably, while the category model and BL-NET are not mutually
exclusive (orthogonal), we have shown a dissociation in their levels of
fit during encoding and prioritization: The category model explains

well representations during encoding but not maintenance, while the
reverse is true for the recurrent DNNs.

Many important previous studies on representational transfor-
mations during VWM prioritization have been conducted with non-
human primates (e.g., refs. 6,86). Our study is the first report on
prioritized representations using human intracranial EEG, which pro-
vides a level of analysis ideally suited to bridge network level (EEG/
MEG) studies on VWM99 to invasive recordings in monkey studies. In
addition, while previous studies have employed analyses on repre-
sentational subspaces based on single unit data (e.g., ref. 86) or com-
puter simulations29,30, we employ DNNs and RSA. While both methods
have their complementary value and importance, a critical difference
is the mapping of DNN onto different processing stages during per-
ception, which adds heuristic value to our findings83.

In summary, we present evidence of successive representational
transformations during VWM encoding and after item prioritization in
the VVS and the PFC that critically depend on recurrent computations
and abstract representational formats. This result shows that percepts
originally formed during encoding are differentially abstracted and
reshaped in VVS and PFC to enable flexible task-dependent manip-
ulations during working memory prioritization.

Methods
Participants
Thirty-two patients (17 females, 30 ± 10.04 years) with medically
intractable epilepsy participated in the study. Data were collected at
the Freiburg Epilepsy Center, Freiburg, Germany; the Epilepsy center,
Second Affiliated Hospital, School of Medicine, Zhejiang University,
Hangzhou, China; and the Center of Epileptology, Xuanwu Hospital,
Capital Medical University, Beijing, China. The study was conducted
according to the latest version of the Declaration of Helsinki and
approved by the ethical committee at the Albert-Ludwigs-Universität
Freiburg. All patients provided written informed consent. The number
of patients included in the study was determined based on previous
literature and is substantially higher than previous iEEG stu-
dies on VWM.

Experimental design
Participants performed a multi-item working memory paradigm
involving a retro-cue. They encoded a sequence of 3 images of natural
objects from different categories and were asked to remember this
content during a subsequent maintenance period. This period con-
sisted of two phases that were separated by a retro-cue. The retro-cue
prompted participants to selectively maintain items from particular
encoding positions (single-item trials, 50%), or to maintain all items in
their order of presentation (multi-item trials, 50%) for a subsequent
memory test. Note that with the exception of the behavioral data, we
only focused on the single-item trials in this study. In the test, six items
were presented, which included all 3 presented items from encoding,
and three new exemplars. Of these three new exemplars, one was
always from a different category. The other two were either both from
categories presented during encoding (50% of trials), or only one of
them (50% of the trials, Fig. 1A). In the single-item trials, one of the lure
items in the testwas from the same category as the cued item in 40%of
the trials. This was done to disable inferences from the probe items to
the categories of the presented items. Objects pertained to six cate-
gories (trees, robots, hands, houses, planets and faces) with ten
exemplars each (60 images in total). In order to perform the task
correctly, participants needed to remember not only categorical
information about the items but also the specific perceptual infor-
mation identifying each individual exemplar.

Performance in the task was quantified separately for each
encoding position. We calculated the proportion of correct responses
for positions 1, 2 and 3 independently and averaged these values to

Article https://doi.org/10.1038/s41467-024-52541-w

Nature Communications |         (2024) 15:8234 11

www.nature.com/naturecommunications


obtain an overall metric of performance in the single and multi-item
trials (Fig. 1C). The task was divided into blocks and sessions. Each
block consisted of 60 trials. Each session consisted of at least one
block, butmost participants performedbetween 1 and 3 blocks in each
session (2.59 ± 1.04) and between 1 and 2 sessions (1.19 ± 0.39) in total.
The order and frequency of image presentations was pseudor-
andomized to balance repetitions of images across blocks and ses-
sions. The experiment was programmed in Presentation
(Neurobehavioral systems, California, USA), and was deployed on
Samsung 12” tablet computers running Microsoft Windows. Patients
performed the experiment while sitting in their hospital beds and
responded to the memory test utilizing the touch-screen of the tablet.

Two versions of the experiment were implemented for the dif-
ferent patient populations in Germany and China. The two versions
had identical stimuli in all categories except for the category “Faces”.
The German version of the experiment included faces of former Ger-
man chancellor Angela Merkel and the Chinese version included faces
of the actor Jackie Chan. This was made to ensure that the face
represented was equally well known to the different patient
populations.

Intracranial EEG recordings
IEEG data were recorded using amplifiers from Compumedics (Com-
pumedics, Abbotsford, Victoria, Australia), and Brain Products GmbH
with sampling rates of 2000Hz and 2500Hz, respectively. Patients
were surgically implanted with intracranial depth electrodes for sei-
zure monitoring and potential subsequent surgical resection. The
exact electrode numbers and implantation locations varied across
patients and were determined by clinical needs. Online recording data
was referenced to a common scalp reference contact which was
simultaneously recorded with the depth electrodes. Data was down-
sampled to 1000Hz and bipolarized by subtracting the activity of one
contact pointwith that from the nearest contact of the sameelectrode,
resulting in a total of N-1 virtual channels for an electrode with N
channels after bipolarization.

Channel localization
Electrodes employed were standard depth electrodes (Ad-Tech Med-
ical Instrument Corporation, Winsconsin, USA). Electrodes contained
variable number of contacts and inter-contact distances. In the data
collected at Zhejiang University, Hangzhou, and Medical University,
Beijing, eachdepth electrodewas0.8mmindiameter andhadeither 8,
12 or 16 contacts (channels) that were 1.5 cm apart, with a contact
length of 2mm. Channel locations were identified by coregistering the
post-implantation computed tomography (CT) images to the pre-
implantation Magnetic Resonance Images (MRIs) acquired for each
patient, which were afterwards normalized to Montreal Neurological
Institute (MNI) space using Statistical Parametric Mapping (SPM;
https://www.fil.ion.ucl.ac.uk/spm/). We then determined the location
of all electrode channels in MNI space using PyLocator (http://
pylocator.thorstenkranz.de/), 3DSlicer (https://www.slicer.org) and
FreeSurfer (http://surfer.nmr.mgh.harvard.edu). In a group of patients
(data collected in Beijing), we determined MNI coordinates using the
pipeline described in ref. 100, and identified the closest cortical or
subcortical label for each channel in each patient. In all patients, we
removed channels located in white matter, resulting in 588 clean
channels across all patients (18.4 ± 11.9 channels per patient).

ROI selection
We selected two main regions of interest given their well-known
involvement in VWM: the ventral visual stream (VVS) and the pre-
frontal cortex (PFC). The VVShas beenwidely studied in the context of
object recognition during visual perception101. Previous work
employing iEEG and Deep Neural Networks often applied RSA metrics
to activity from distributed electrodes across the whole brain (e.g.57,),

and we specifically aimed to extend these studies by investigating
region-specific representations in the context of VWM (see
also ref. 80).

The role of the PFC in working memory has been linked to
executive control processes that enable the task-dependent manip-
ulation and transformation of information1,4,102. However, relatively
little is known about the representational formats of VWM repre-
sentations in this region during prioritization. Moreover, no previous
study investigated region-specific representational similarity
during VWM.

Electrodes located at the following freesurfer locations were
labeled as VVS electrodes: ‘inferior temporal’, ‘middle temporal’,
‘superior temporal’, ‘bankssts’, ‘fusiform’, ‘cuneus’, ‘entorhinal’. Elec-
trodes with the following labels were categorized as PFC electrodes:
‘medial orbitofrontal’, ‘pars triangularis’, ‘superior frontal’, ‘lateral
orbitofrontal’, ‘pars opercularis’, ‘rostral anterior cingulate’, ‘rostral
middle frontal’, ‘superior frontal’. Electrodes from both left and right
hemisphereswere included in our ROIs. This resulted in a total number
of 147 electrodes (16 subjects) in PFC and 441 in VVS (28 Subjects). The
different number of subjects and channels in our two ROIs implies
different levels of statistical power. Since an important objective of our
study was to characterize how representations in PFC and VVS differ
during VWM maintenance and prioritization, we confirmed that our
main findings replicate when matching statistical power in VVS and
PFC through several control analyses (Supplementary Fig 11 and Sup-
plementary Note 7).

In additional analyses, we specifically analyzed activity in the lat-
eral prefrontal cortex (LPFC), a brain region that has been associated
with attentional prioritization6, the representation of rules103 and
categories104 in non-human primates. We excluded all PFC electrodes
with MNI x-coordinates smaller than −35 or larger than +35 and z-
coordinate < −15. The new selection resulted in a group of 9 subjects
with a total number of 38 electrodes in the LPFC,whichwere located in
the following Freesurfer regions: ‘rostral middlefrontal’, ‘pars trian-
gularis’, ‘caudal middlefrontal’, ‘pars orbitalis’ and ‘pars opercularis’
(Supplementary Fig 12).

Preprocessing
We visually inspected raw traces from all channels in each subject
independently and removed noisy segments without any knowledge
about the experimental events/conditions. All channels located within
the epileptic seizure onset zone or severely contaminated by epi-
leptiform activity were removed from further analyses. We divided the
data into 9-second epochs (from −2 to 7 s) around the presentation of
each stimulus at encoding or the onset of the retro-cue during the
maintenance period. After epoching the data, we completely removed
epochs containing artifacts thatwere identified andmarked in the non-
epoched (continuous) data.We visually plotted spectrograms to verify
the presence of artifacts in the frequency domain in the resulting
epochs. The number of epochs corresponding to item or cue pre-
sentation that were removed varied depending on the quality of the
signal in each subject (15.10 ± 13.14 in each session, corresponding to
around 6.9% of all epochs in each session).

Preprocessing was performed on the entire raw data using
EEGLAB105, and included high-passfiltering at a frequencyof0.1Hz and
low-pass filtering at a frequency of 200Hz. We also applied a band-
stop (notch) filter with frequencies of 49–51 Hz, 99–101Hz, and
149–151Hz.

Time-frequency analysis
Using the FieldTrip toolbox106, we decomposed the signal using com-
plex Morlet wavelets with a variable number of cycles, i.e., linearly
increasing in 29 steps between 3 cycles (at 3 Hz) and 6 cycles (at 29Hz)
for the low-frequency range, and in 25 steps from6 cycles (at 30Hz) to
12 cycles (at 150Hz) for the high-frequency range. These time-
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frequency decomposition parameters were taken following previous
research that used iEEG oscillatory power as features for RSA49,57,107.
The resulting time-series of frequency-specific power values were then
z-scored by taking as a reference the mean activity across all trials
within an individual session108. This type of normalization was applied
to remove any common featureof the signal unrelated to the encoding
of stimulus-specific information.We z-scored across trials in individual
sessions in our final analyses, but similar results were obtained when
we z-scored the data by considering the activity of all trials irrespective
of the session.We employed the resulting time-frequencydata to build
representational feature vectors in our pattern similarity analyses
(see below).

Pattern similarity analysis: representational patterns
We employed different representational features in our analyses
involving model RSMs (i.e., the category model RSA analysis and the
DNN-based RSA analyses), and our analyses involving particular con-
trasts (i.e., encoding-encoding similarity analysis [EES] and the
encoding-maintenance similarity analysis [EMS]; see below). In both
types of analyses, representational feature vectors were defined by
specifying a 500ms time window in which we included the time
courses of frequency-specific power values in time-steps of 100ms (5
time points) across all contacts in the respective ROI (VVS or PFC). In
theRSMbased analyses,weperformed this analysis separately for each
individual frequency in the 3–150Hz range, while in the EES and EMS
analyses, we analyzed activity patterns across individual frequencies
within five different bands (theta, 3–8Hz; alpha, 9–12 Hz; beta,
13–29Hz; low-gamma, 30–75Hz, high-gamma, 75–150Hz). In the RSM-
based analyses, a frequency-specific representational pattern was thus
composed of activity of N electrodes x 5 time-points in each 500ms
window. In the EES and EMS analyses, this representational feature
vector consisted of N electrodes xM frequencies x 5 time-points. Note
that the number of channels included in the representational feature
vectors varied depending on the number of electrodes available for a
particular subject/ROI, and thenumber of frequencies included in each
band in the EES and EMS analyses varied as well (theta: 6 frequencies;
alpha: 4 frequencies; beta: 17 frequencies; low-gamma: 9 frequencies,
high-gamma: 16 frequencies; see section Time-frequency decomposi-
tion above). These two- or three-dimensional arrays were con-
catenated into 1D vectors for similarity comparisons. Only subjects
with at least 2 electrodes in a particular ROI were included in all RSA
analyses, leading to 15 subjects in the PFC and 26 subjects in the VVS.

Model-based RSA
Weemployed temporally resolvedRepresentational Similarity Analysis
(RSA) to evaluate the dynamics of categorical information in our data
following previouswork33,101. Amain assumption of this research is that
stimuli from the same categories will have greater neural similarity
than stimuli from different categories. To evaluate this hypothesis, we
constructed a representational similaritymatrix (RSM) inwhich a value
of 1 was assigned to pairs of items of the same category and a value of
zero to items of different categories (‘category model’, Fig. 2A). We
also built an ‘item model’ to track the presence of item-specific infor-
mation, in which correlations of items of the same category were
coded with a 1 and correlations of different items were coded with a
zero (Supplementary Fig 3A). Finally, we used RSMs extracted from
layers of DNNs as models of representation (see section Stimulus
representations in DNNs below).

The different model RSM were correlated with time series of
neural RSMs in each of our ROIs. Pairwise correlations among stimuli
were computed in windows of 500ms, overlapping by 400ms, using
the representational patterns described in the section above, resulting
in an RSA time-frequencymap in each of our ROIs. In order to obtain a
robust estimate of the multivariate patterns representing individual
items in the category model analysis, we averaged the time-frequency

activity across repetitions of items throughout the experiment in each
channel independently before building the neural RSMs (note that this
was not done in the itemmodel analysis where repeated presentations
of exemplars were required). RSM time-series were vectorized by
removing the diagonal values and taking only half of the matrix given
its symmetry at each time-frequency point. We correlated vectorized
model RSMs and neural RSMs at each time-frequency point using
Spearman’s rho, and evaluated whether the resulting Fisher
z-transformed rho-valuesweredifferent fromzero at the group level to
determine statistical significance (two-sided tests). Multiple compar-
isons correction was performed using cluster-based permutation sta-
tistics (see below), and—in the DNN analyses—, we Bonferroni
corrected the final results to account for the number of layers tested in
each network.

Contrast-based RSA
In order to test the reoccurrenceand stability of activity patterns inour
two regions of interest during encoding and between encoding and
maintenance, we performed two contrast-based pattern similarity
analyses, as a complementary analysis to the model-based RSA
approach (Fig. 2). In particular, we investigated the presence of
category-specific information in our data by contrasting correlations
between different items of the same category with correlations
between different items from different categories. This was done
separately for items presented in different trials during encoding
(encoding-encoding similarity, EES) and between encoding and main-
tenance (encoding-maintenance similarity, EMS). Only items belong-
ing to different trials were included in this analysis to avoid any
spurious correlations driven by the autocorrelation of the signal.
Similar to the model-based RSA approach, we averaged across item
repetitions before conducting the similarity comparisons.

We computed similarities for same-category and different-
category item pairs and averaged across all combinations of items in
the same condition in each subject independently (rho values were
Fisher z-transformed before averaging). The same-category and
different-category correlations were then statistically compared at the
group level using t-tests. In the different-category condition, we
excluded item pairs containing stimuli presented in overlapping trials
after averaging, again to avoid any possible bias related to the auto-
correlation of the signal. As an example, if a Robot exemplar was
presented in trials 2, 4 and 8, and a planet was presented in trials 7, 9
and 8, the average correlation corresponding to these items would
contain activity of an overlapping trial (8 in the example). The corre-
lation corresponding to these two items would therefore not be
included. Note that this was not necessary for the same category
correlations.

We quantified the similarity of neural representations by
comparing epochs of brain activity separately in VVS and PFC. Note
that contrary to the model-based RSA approach (see above) this
analysis was not performed at each individual frequency but fre-
quencies were grouped into five frequency bands. This effectively
increased the information content (variance) of our representa-
tional patterns, making them more suitable to investigate their
reoccurrence during encoding and maintenance. Moreover, com-
bining individual frequencies into bands allowed us to reduce the
dimensionality of the results when comparing all pairwise combi-
nations of time points in the temporal generalization analysis. We
computed the correlation of these representational patterns across
all available time-points using a sliding time window approach
proceeding in time steps of 100ms (i.e., with an 80% overlap). This
resulted in a temporal generalization matrix with two temporal
dimensions on the vertical and horizontal axes (Fig. 2D). Note that
values in these matrices reflect both lagged (off-diagonal) and non-
lagged (on-diagonal) correlations and were thus informative about
the stability of neural representations over time5.
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Pattern similarity maps were computed for each pair of items in a
correspondent condition at each time-window and rho values in these
maps were Fisher z-transformed for statistical analysis. The temporal
generalization maps were averaged across conditions for each subject
independently, and the resulting average maps were contrasted via
paired t-tests across conditions at the group level.

Please note that in all pattern similarity plots (and also in theDNN-
RSA plots, see below), correlations corresponding to each 500ms
windowwere assigned to the time point at the center of the respective
window (e.g., a time bin corresponding to activity from 0 to 500ms
was assigned to 250ms).

Please note that while the contrast-based and the model-based
RSA analyses have been employed as complementary approaches to
investigate neural representations109, they differ in two important
aspects. The first distinction relates to the level at which the two
methods assess similarities in the representations. While the model-
based analysis captures differences in the representational geometry
of stimuli (it correlates RSMs of neural data with RSMs of models, a
second level analysis), the contrast-based analysis directly correlates
neural patterns and is thus sensitive to reoccurrence and transforma-
tionof specific neural features. For example, the same representational
distances (and thus RSMs) may depend on one particular brain region
(i.e., set of electrodes) during encoding and a different brain region
during maintenance, leading to significant RSM-based similarities in
the absence of encoding-maintenance similarity (EMS). The model-
based analyses, on the other hand, correlates representational dis-
tances during either encoding or maintenance with distances in par-
ticular RSMmodels, and does not directly compare levels ofmodel fits
between encoding and maintenance. Thus, in a strict sense, this
approach does not directly test the reoccurrence of the representa-
tional geometry, but whether a particular geometry is present during a
specific time period. To test for the reoccurrence of a particular
representational geometry in the model-based analyses, we directly
contrasted the different levels of fit during particular time periods
using paired t-tests. A second difference relates to the specific neural
features that were included in each analysis. The RSM-based analysis
was conducted separately for each individual frequency in the
3–150Hz range, which allowed for a fine-grained assessment of the
contribution of individual frequencies. By contrast, feature vectors in
the EMS analyses included power values across several individual fre-
quencies within particular frequency bands, and thus contained higher
variance. This was done in order to reduce dimensionality of the
representational patterns and facilitate the process of multiple com-
parisons correction (see below). To corroborate that our results were
not affected by differences in the frequency features that we selected
in each analysis, we conducted the (RSM-based) category model ana-
lysis in the same frequency bands as the EMS analyses (theta, alpha,
beta, low-gamma, high-gamma). Our results revealed a significant fit of
the categorymodel during encoding in all frequency bands in the VVS,
and a more restricted fit in the PFC in the beta band (pcorr = 0.015,
Bonferroni corrected for 5 bands; Supplementary Fig 13A). During
maintenance, wedid not observe any significant fit in VVSor PFC in any
band (VVS: all pcorr = 1; PFC: all pcorr = 1; Supplementary Fig 13B).

RSA at high temporal resolution
We increased the temporal resolution of our sliding time window
approach to compare the onset of category-specific information in
VVS and PFC (Fig. 2E). In this analysis, power values were computed
with the same method and parameters as in the main contrast-based
analysis, but at an increased temporal resolution (10ms). Feature
vectors were constructed in 500ms time windows and the 50 time-
points included in each window were averaged separately for elec-
trodes and frequencies, resulting in a two-dimensional representa-
tional pattern. We included all individual frequencies in the 3–150Hz
range (a total of 52). These two-dimensional frequency x electrode

vectors were concatenated into one-dimensional arrays for similarity
analyses. We employed a sliding time-window approach with incre-
mental steps of 10ms resulting in an overlap of 490ms between two
consecutive windows, focusing only on matching time points (non-
lagged correlations).Weperformed this analysis separately for the VVS
and the PFC and assessed the statistical significance of the resulting
time-series in each region. At each timepoint, we compared the group-
level Fisher z-transformed rho values against zero. We also directly
compared the values between PFC and VVS at the group level. Given
that not all subjects had implanted electrodes in both of our two ROIs,
we performed unpaired t-tests at each time-point. We corrected for
multiple comparisons by applying cluster-based permutation statistics
in the temporal dimension in all the pattern similarity analyses (see
section Multiple Comparisons Correction below).

Feedforward and recurrent DNN models
We compared VWM representations in the iEEG data with those
formed in two types of convolutional deep neural network (DNN)
architectures: feedforward and recurrent DNNs. We used AlexNet62, a
widely applied network in computational cognitive neuroscience to
model visual perception and WM, as our feedforward model36,57. We
also employed two recurrent convolutional DNNs: BL-NET, which has
been recently applied to model human reaction times in a perceptual
recognition task71, and corNET-RT, a network recently developed to
model information processing in the primate ventral visual stream72.
AlexNet is a deep convolutional feedforward neural network com-
posed of five convolutional layers and 3 fully connected layers that
simulates the hierarchical structure of neurons along the ventral visual
stream. AlexNet was trained in the task of object identification, i.e., the
assignment of object labels to visual stimuli, using the ImageNet
dataset110. When learning to identify images, AlexNet develops layered
representations of stimuli that hierarchically encode increasingly
abstract visual properties: Early layers reflect low-level features of
images such as edges or textures while deeper layers are sensitive to
more complex visual information, such as the presence of objects or
object parts. Several studies demonstrated the validity of AlexNet as a
model of neural representations during biological vision, showing that
it can capture relevant features of information processing in the VVSof
humans during perceptual and mnemonic processing36,58,64. We com-
puted RSMs at every convolutional and fully connected layers of the
network, following previous work57,58.

The BL-NET is a deep recurrent convolutional neural network
consisting of 7 convolutional layers with feedforward and lateral
recurrent connections, followed by 7 batch normalization and RELU
layers. Every unit in the BL-NET network receives lateral input from
other units within feature maps. BL-NET has demonstrated high
accuracy in the task of object recognition71 after being trainedwith two
large-scale image datasets (i.e., ImageNet and Ecoset71,76;). We tested
the network trained with these two different datasets in our analyses.
Given that the output of each layer, which combines activity of lateral
and feedforward connections, is computed at every single time-step in
the RELU layers of the model, we selected these specific layers to
compute the RSMs in our main analyses71. We obtained similar results
when we compared the activations extracted from the convolutional
layers (after batch normalization).

The corNET-RT network is another prominent example of recur-
rent architectures that have been employed tomodel neural activity in
the VVS of primates. It comprises four layers designed to capture
informationprocessing in themain four VVS regions: V1, V2, V4, and IT.
Like the BL-NET, corNET-RT exclusively incorporates lateral and not
across area connectivity. Each layer of the network consists of an input
and output convolutional layer, group normalization and RELU non-
linearities. Unlike the BL-NET, the number of recurrent steps in each
layer is not fixed but varies from 5 (in layer V1) to 2 (in layer IT). RSMs
were computed specifically for the convolutional layers (we selected
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the output convolutional modules in each layer), although similar
results were observedwhen RSMswere computed from the outputs of
the non-linear layers.

BL-NET and corNET-RT are two of the most prominent task-
performing convolutional DNN models for image classification that
have introduced recurrence as a main architectural feature. These
networks have shown improvements in performance as compared to
parameter-matched feedforward networks in the complex task of
object recognition71,72. Theoretical accounts and experimental findings
have proposed that recurrent DNNs can better explain neural activity
in the VVS and behavioral data than feedforward networks33,59,69,72,111.
While previous studies characterized neural representations in
humans using recurrent models in the domain of visual perception33,
no study so far has used these types of architectures to model VWM,
and no study has applied them to iEEG data.

Note that the BL-NET and the corNET-RT networks have different
unrolling schemes across time, which affects how activity propagates
through the networks. In BL-NET, feedforward and recurrent proces-
sing happen in parallel: a feedforward pass takes no time, while each
recurrent step takes 1 time point. Thus, each layer receives a time-
varying feedforward input. In corNET-RT, on the other hand, the onset
of responses at deep layers is delayed when recurrence is engaged in
earlier layers. These two approaches have been referred to as unrolling
in ‘biological’ time (corNET-RT) vs ‘engineering’ time (BL-NET, see
refs. 71,72).

Stimulus representations in DNNs
In order to analyze how the different DNN architectures repre-
sented the stimuli in our study, we presented the networks with our
images and computed unit activations at each layer. We calculated
Spearman’s correlations between the DNN features for every pair
of pictures, resulting in a 60 × 60 representational similarity matrix
(RSM) in each layer47. The AlexNet unit activations were computed
using the Matlab Deep Learning Toolbox. Images were scaled to fit
the 227 x 227 input layer of the network. The unit activations in the
BL-NET network were extracted using the pipeline described in
https://github.com/cjspoerer/rcnn-sat. Images were scaled to
128 × 128 pixels, and normalized to values between −1 and 1 to fit
the input layer of the network as it was originally trained. The
number of recurrent passes in the BL-NET architecture was set to 8
time-steps in each layer. We extracted the unit activations at each
of these time points and computed RSMs, resulting in a total of 7
(layers) × 8 (time-points) = 56 RSMs. corNET-RT activations were
extracted using TorchLens112, and we corroborated the results
using the ‘TorchVision’ toolbox73. Images were z-scored to the
mean and standard deviation of the ImageNet database and scaled
to 224 × 224 pixels to match the training parameters of the
network.

To visualize the representations of stimuli in our networks, we
employed Multidimensional Scaling (MDS). MDS is a dimensionality
reduction technique which exploits the geometric properties of RSMs,
projecting the high-dimensional network activation patterns into
lower-dimensional spaces. To apply the MDS algorithm to our RSMs,
we subtracted the correspondent values in the matrix from 1 to obtain
a distancemetric and projected the data into twodimensions (Figs. 3A,
4E and 5E).

Importantly, all three architectures we employed were trained
with the ImageNet dataset, in which none of the categories included in
our study (‘house’, ‘robot’, ‘hand’, ‘face’, ‘planet’, and ‘tree’) are present
as object labels. For this reason, we did not focus our analysis on
network classification performance but characterized categorical
representations that were formed across layers, computing within-
category, between-category correlations and their difference (CCI
scores, see below). Moreover, we performed an additional control
analysis involving a variant of BL-NET trainedwith the Ecoset dataset76,

which contains part of our stimuli labels (i.e., labels ‘house’, ‘robot’ and
‘tree’) to corroborate our main results (Supplementary Fig 10).

The segregated representation of images according to their clas-
ses in deep layers of convolutional DNNs is a well-documented
phenomenon113,114. This segregation however can be achieved by (1)
grouping together items belonging to the same category, (2) separ-
ating items belonging to different categories, or (3) a combination of
these two processes. To distinguish among these possibilities, we
separately computed within-category and between-category correla-
tions in all DNN layers.Results are presented inFigs. 3C, 4Dand5D, and
in Supplementary Fig 5. In addition to computing the representational
geometry of stimuli across all layers of the networks, we quantified the
similarity between RSMs across layers using Spearman’s Rho (a “sec-
ond-level” similarity metric; see ref. 74). We applied MDS to visualize
the similarity structure of the initial and last timepoints in each layer of
BL-NET and Cornet-RT (Figs. 4B and 5B).

To quantify the amount of category information in the different
layers of the networks, we computed a Category Cluster Index
(CCI), defined as the difference of average within-category and
between-category correlations in the DNN representations of the
stimuli. Both within and across category correlation averages were
computed after removing the diagonal of the RSM matrices (which
only contains values of 1 by definition) and duplicated values due to
the symmetry of the RSMs. CCI approaches 1 if representations in all
categories are perfectly clustered and 0 if no categorical structure is
present in the data74. We computed CCI at each layer of the AlexNet
(Fig. 3C), and for each time point in each layer of the BL-Net and the
corNET-RT networks (Figs. 4D and 5D). To assess whether the
observed CCI values were significant, we implemented a permuta-
tion procedure. We built a distribution of CCI values expected by
chance by shuffling the trial labels of the network RSMs 1000 times
and recomputing CCI values. We considered significant CCI values
that exceeded the 95th percentile of these null distributions.

In order to better characterize categorical representations in our
networks and directly compare them, we performed a linear fit of
within-category and between-category correlations across layers
(Supplementary Fig 5).We specifically focused on the last timepoint in
each layer in our recurrent architectures.We computed the correlation
of the activations corresponding to every pair of items in each layer
and performed a linear least-squares fit with the resulting values (270
within-category correlations and 1500 between-category correlations
were computed in each layer). To evaluate whether correlations
increased or decreased linearly across layers, we compared the dis-
tribution of slopes taken from the linear fit against zero (representing
the null hypothesis of an average flat line) in each individual network.
In addition, we compared these distributions across networks using
paired t-tests.

Please note that given that two versions of the experiment were
created for German and Chinese participants (with Angela Merkel and
Jackie Chan as face stimuli, respectively), we passed through the net-
works two different datasets of images. For visualization of network
RSMs and correspondingMDSplots (Figs. 3A, 4E and 5E), we employed
the German version of the stimuli. In the analyses focusing on the
network representations, we generated independent statistics for the
two stimuli sets and then averaged them. This applies to the plots
showing the representational consistency of networks across layers
and time-points, within- and between-category correlations and CCI
scores (Figs. 3B, C, 4A–D, and 5A–D).

Representational similarity analyses based on DNNs: modeling
neural representations with deep neural networks
We compared the representations formed in the DNN architectures
with the iEEG representations using RSA. Neural RSMs were con-
structed following the procedure described in the sectionModel-based
RSA above.
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Similar to the category model analysis, we performed a time-
frequency resolved analysis of fits of neural and DNN-based RSMs. In
this analysis, neural RSM time series (same time windows as described
above) were computedwith feature vectors comprising informationof
each individual frequency independently (e.g., for 3Hz, 4Hz, …

150Hz). The resulting RSM time-series were correlated with network
RSMs at each individual layer. Individual frequencies were extracted
using the same parameters as in the category model and the contrast-
based analyses (see section Time-frequency analysis). The resulting
time-series of correlation values were stacked into time-frequency
maps of model fits. Significance was determined by contrasting the
observed Fischer-Z transformed rho values against zero at the group
level. Results were corrected for multiple comparisons using cluster-
based permutation statistics and we additionally applied Bonferroni
corrections across layers (see below).

We separately analyzed the fit of particular DNN models to the
within-category and the between-category correlations in the neural
data (Supplementary Fig 1, Supplementary Fig 3). In these analyses, we
excluded the within-category or the between-category correlations
fromboth the neural data and themodels before vectorizing the RSMs
and computing the correlations.

Trial-based DNN analyses: correct vs incorrect
Since the number of incorrect trials was substantially lower than the
number of correct trials in our data, directly comparing DNN correla-
tions of the RSMs of incorrect vs. correct trials would be unbalanced.
We thus computed a single-trial metric of model fits by correlating
each row in the model RSMs and the neural RSMs independently92.
Because of the unbalanced trial numbers, we then analyzed the match
of these representations at all time-frequency points and for all DNN
layers, instead of selecting the time periods where we had observed
the original effects (which were mainly driven by the correct trials,
given their larger number). This resulted in one time-frequencymap of
model fits for each trial. We averaged these trial-specific fits separately
for correct and incorrect trials and in the two ROIs and evaluated
whether there was a difference between correct and incorrect trials at
all time-frequency bins. We only included subjects with at least 5 trials
in each condition, leading to a total of 18 participants for VVS and 13 in
PFC (paired t-tests were applied to the average time-frequency maps
across conditions). Given the relevance of categorical information for
PFC and VVS representations, trials in which the correct category of
the cued item was reported were considered as correct, and trials in
which subjects failed to retrieve the correct category were considered
incorrect. This led to a total number of 13.22 ± 9.12 incorrect trials and
65.23 ± 30.64 correct trials in the VVS analysis (Mean± STD), and of
11.77 ± 4.94 incorrect trials and 60.26 ± 26.55 correct trials in the PFC
analysis (Mean ± STD).

Stress analysis
We performed Multidimensional Scaling (MDS) on the RSMs during
encoding and maintenance at various levels of dimensionality and
computed the stress value of theMDS projections. Stress (a.k.a. Stress-
1) is a metric of the goodness of fit of a particular MDS projection that
reflects how well a lower-dimensional embedding—in a specific
dimension—reflects the structure of the high-dimensional data. Stress
values are low if the data can be relatively well embedded in lower
dimensions, and high if the embedding is less accurate. We performed
the MDS analysis for all dimensions in the 1–60 range (corresponding
to the size of the average RSM). For every subject, we converted the
RSMs into distance matrices (1-correlation), performed MDS and
computed stress in each time period. Given that the stress metric is
sensitive to the number of dimensions of the distance matrix, we
randomly removed items in RSMs to match the number of the condi-
tion with less items (some subjects had less than 60 trials during the
maintenance period because some trials were removed during artifact

rejection). This was done 100 times to corroborate that the results
were not affected by the specific random selection of trials. We sub-
sequently compared the group level stress values during encoding and
maintenance for everydimension independently, and assessed regions
of contiguous dimensionswith significant differences between the two
time periods. We applied cluster-based permutations statistics to
control for multiple comparisons correction (see below).

Multiple comparisons corrections
We performed cluster-based permutation statistics to correct for
multiple comparisons in the pattern similarity analyses (Fig. 2), in the
RSA-DNN analyses (Figs. 3–5), and in the analysis of different levels of
stress during encoding and maintenance (Supplementary Fig 1).

In the pattern similarity analyses, we applied cluster-based per-
mutation statistics both for the temporal generalization analysis
(Fig. 2D, F), and for the temporally resolved analysis (Fig. 2E). For both
analyses, we contrasted same and different category correlations at
different time-points using t-tests, as in the main analysis, after shuf-
fling the trial labels 1000 times.We considered significant a time-point
if the difference between these surrogate conditions was significant at
p <0.05 (two-tailed tests were employed). At every permutation, we
computed clusters of significant values defined as contiguous regions
in time where significant correlations were observed and took the
largest cluster at each permutation. Please note that in the temporal
generalization analysis, time was defined in two dimensions and clus-
ters were formed by grouping significant values across both of these
dimensions, while in the temporally resolved analysis (Fig. 2E), corre-
lations were computed at matching time-points and clusters were
formed along one temporal dimension. In both analyses, the permu-
tation procedure resulted in a distribution of surrogate t-values under
the assumption of the null hypothesis. We only considered significant
those contiguous time pairs in the empirical (non-shuffled) datawhose
summed t-values exceeded the summed t-value of 95% of the dis-
tribution of surrogate clusters (corresponding to a corrected P <0.05;
see ref. 115).

We also performed cluster-based permutation statistics in the
analysis at high temporal resolution in which we directly compared
similarity values between VVS and PFC. In this analysis, we computed
clusters of significant EES differences between the two regions for
every time-point by applying unpaired t-tests. We repeated this ana-
lysis 1000 times after shuffling the region labels and kept the summed
value of the largest cluster at every permutation. We only considered
significant those clusters in the empirical data above the 95th percentile
of the shuffled distribution.

In the RSA-DNN analyses (and also in the category model RSA
analysis, Fig. 2), we applied cluster-based permutation statistics. To
determine the significance of the correlations between neural and
model RSMs, we recalculated the model RSMs at each layer of the
network after randomly shuffling the labels of the images. The surro-
gate model similarity matrices were then correlated with the neural
similarity matrix 1000 times at all time-frequency pairs. As in the ori-
ginal analysis, we computed the correlations after removing the
diagonal of the RSMs and only took half of the matrices given their
symmetry. We identified clusters of contiguous windows in the time-
frequency domain where the group-level correlations between neural
and network RSMs were significantly different from zero at p <0.05
(two-sided test) and selected the maximum cluster size of summed t-
values for every permutation. This resulted in a distribution of surro-
gate t-values. The statistical significance was then determined by
comparing the correlation values for the empirical data with the dis-
tribution of correlation values for the surrogate data (clusters whose
summed t-values exceeded the 95% of the null distribution were con-
sidered significant).

In addition to cluster-based permutations, we also corrected our
results for multiple comparisons using the Bonferroni method in the
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contrast-based RSA analyses (Fig. 2) and in the model-based RSA
analyses (Figs. 2, 3, 4, and 5). In the contrast-based analyses, given that
we tested five different frequency bands, we only considered p-values
significant that were below an alpha of 0.05/5. In the model-based
analyses, we adjusted the significance threshold according to the
correspondent number of layers in each network that was tested
(AlexNet= 8; BL-NET= 7, corNET-RT= 4). The same correction by
number of layers was applied in the CCI analysis (Figs. 3C, 4D and 5D).

To correct for multiple comparisons in the correct versus incor-
rect trial level DNN fit analysis, we shuffled the condition labels (cor-
rect versus incorrect) 1000 times. At each permutation, we calculated
the summed t-values of the significant differences between conditions
with shuffled labels, resulting in a distribution of summed t-values
under the null hypothesis. We then ranked the observed t-value with
respect to this distribution to assess statistical significance.

In the analysis of different levels of stress during encoding and
maintenance, we randomly shuffled the condition labels (encoding or
maintenance) in each subject independently 1000 times and recom-
puted the condition differences. At each permutation, we summed the
t-values of the largest cluster of significant dimensions, resulting in a
distribution of t-values expected by chance.We ranked the observed t-
values with respect to this null distribution to assess statistical
significance.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Anonymized intracranial EEGdata supporting thefindings of this study
have been deposited in the Open Science Framework (https://osf.io/
mw8cf/). Source data are provided with this paper.

Code availability
Custom-written Matlab and Python code supporting the findings of
this study are available at https://github.com/dpachec/WM.
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