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Elucidating the neural mechanisms of general cognitive ability (GCA) is an important mission of cognitive neuroscience. Recent large-
sample cohort studies measured GCA through multiple cognitive tasks and explored its neural basis, but they did not investigate how
task number, factor models, and neural data type affect the estimation of GCA and its neural correlates. To address these issues, we
tested 1,605 Chinese young adults with 19 cognitive tasks and Raven’s Advanced Progressive Matrices (RAPM) and collected resting
state and n-back task fMRI data from a subsample of 683 individuals. Results showed that GCA could be reliably estimated by multiple
tasks. Increasing task number enhances both reliability and validity of GCA estimates and reliably strengthens their correlations with
brain data. The Spearman model and hierarchical bifactor model yield similar GCA estimates. The bifactor model has better model fit
and stronger correlation with RAPM but explains less variance and shows weaker correlations with brain data than does the Spearman
model. Notably, the n-back task-based functional connectivity patterns outperform resting-state fMRI in predicting GCA. These results
suggest that GCA derived from a multitude of cognitive tasks serves as a valid measure of general intelligence and that its neural
correlates could be better characterized by task fMRI than resting-state fMRI data.
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Introduction
One important aim of cognitive neuroscience is to understand
the neural mechanisms of general intelligence or general cog-
nitive ability (GCA; Deary et al. 2010; Barbey 2018). GCA or the
g factor was proposed based on the well-documented finding
that individuals’ performances on various cognitive tests are
positively correlated with one another (or the “positive manifold”)
(Spearman 1904; Jensen 1998). GCA has been found to play impor-
tant roles in many aspects of everyday life. For example, GCA
is reliably correlated with school achievement (Flores-Mendoza
et al. 2021; Gustafsson and Balke 1993; Roth et al. 2015), work
performance (Ree et al. 1994; Kuncel et al. 2004), and even physical
health and longevity (Gottfredson and Deary 2004).

Although most of the cognitive neuroscience studies have
focused on the neural mechanisms of specific cognitive domains,
some recent studies have attempted to decipher the neural corre-
lates of GCA (Deary et al. 2010; Barbey 2018; Duncan et al. 2020).
However, these studies had two major weaknesses. First, the mea-
surements of GCA were inconsistent across studies. Some stud-
ies used single high-g-loaded tasks, especially Raven’s Advanced
Progressive Matrices (RAPM; Raven et al. 1978), to measure GCA
(Duncan 2000; Haier et al. 2003; Finn et al. 2015), while other
studies adopted intelligence tests that included diverse tasks,
such as Wechsler Adult Intelligence Scale (WAIS; Gignac and Bates
2017). Each test has its limitations: RAPM might tap only certain
aspects of GCA, and WAIS is time-consuming and thus hard to be

administered to a large sample. Second, many existing structural
and functional brain studies of GCA had inadequate sample sizes
(e.g. less than 100) (Duncan 2000; Jung and Haier 2007; Colom
et al. 2010; Cole et al. 2012; Schultz and Cole 2016), yet it has been
shown that a large sample size is required for both the reliable
estimation of GCA (Jensen 1998, p. 95) and reproducible brain-wide
association with behavior (Marek et al. 2022).

To overcome the above two weaknesses, researchers have
recently turned to large-scale cohort studies that include a large
sample of subjects, multiple cognitive tasks, and both structural
and functional imaging. They estimated GCA by extracting the
principal component from the available tasks: eleven tasks (six of
them from the NIH toolbox) in the Human Connectome Project
(HCP; Dubois et al. 2018; Stammen et al. 2023), four cognitive
tasks in the UK Biobank (Cox et al. 2019), and nine tasks (seven of
them from the NIH toolbox) in the Adolescent Brain Cognitive
Development (ABCD) project (Thompson et al. 2019; Sripada,
Rutherford, et al. 2020). Based on these large-scale studies,
researchers found robust associations (r = 0.2–0.4) between GCA
and functional as well as structural indices of the brain, and
identified widely distributed brain regions associated with GCA
(Barbey 2018; Duncan et al. 2020).

Despite advances in this area of research, several methodolog-
ical issues have yet to be examined closely. First, although several
studies have shown that tasks from different intelligence batter-
ies provide a highly consistent measure of general intelligence
(Johnson et al. 2004; Johnson et al. 2008), verification is still
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needed to see whether GCA could be validly estimated from
cognitive tasks that were not developed to measure intelligence
but rather to characterize specific cognitive processes (Roznowski
et al. 2000). Second, previous behavioral studies have shown
that the number of tasks significantly impacts the GCA estima-
tion, with larger test batteries producing better estimates of GCA
(Major et al. 2011). However, large-scale neuroimaging studies
have not systematically examined the effect of task number on
the accuracy of GCA estimation using both behavioral and neural
data. This issue may be particularly important when cognitive
tasks have relatively low reliability (Enkavi et al. 2019).

Third, it is still unclear how the choice of factor models affects
the estimation of GCA and its neural correlates. So far, two major
factor models have been used to estimate GCA: the first is based
on the Spearman model to extract a single g factor, and the second
incorporates a bifactor model with group factors (Jensen 1998).
Jensen (Jensen and Weng 1994) initially named these two GCAs
as “Spearman’s g” and “psychometric g,” respectively, and warned
that the Spearman’s g could be biased (Humphreys 1989), but
further studies have been inconclusive. Some studies show highly
similar results between the two methods (Ree and Earles 1991;
Jensen and Weng 1994), whereas other studies suggest that task
loadings on the general factor are significantly influenced by the
type of factor model (Floyd et al. 2009; Major et al. 2011). In the
large-scale imaging studies, the Spearman model has been used
to analyze the UK Biobank data (Cox et al. 2019) and the bifactor
model has been fitted to the HCP dataset (Dubois et al. 2018;
Sripada, Angstadt, et al. 2020; Stammen et al. 2023) and the ABCD
dataset (Thompson et al. 2019; Sripada, Rutherford, et al. 2020).
However, no imaging study has systematically examined how the
choice of factor model impacts the estimation of GCA and its
neural correlates.

Finally, it is still being debated as to which type of brain data
could provide a better understanding of the neural mechanisms
of GCA. Earlier studies utilized brain imaging data (e.g. Duncan
2000; Jung and Haier 2007; Rushton and Ankney 2009) or brain
lesion data (Gläscher et al. 2009) to localize GCA to specific brain
regions, but recent studies suggest that intelligence relies on the
integrated functions of brain networks (Barbey 2018). In addition,
while the majority of studies have used resting state functional
data to predict GCA (Finn et al. 2015; Dubois et al. 2018), there
is emerging evidence that the brain connectivity patterns based
on task fMRI data might provide better prediction of individuals’
cognitive abilities (Greene et al. 2018; Jiang et al. 2020; Sripada,
Angstadt, et al. 2020). Given that these studies are mainly based
on Western populations, more studies from diverse demographic
samples are required to address this important question.

To summarize, the current study aimed to further examine the
neural substrates of GCA by systematically examining the roles of
the three factors discussed above: the number of tasks, the choice
of factor model, and the type of brain data. We collected a large
dataset from young healthy Chinese adults (n = 1605, male = 667,
mean age = 20.8 years), who performed 19 cognitive tasks as well
as RAPM. Two types of brain imaging data (resting state and n-
back task) were collected from a subsample (n = 683, male = 263,
mean age = 21.0). Four sets of analyses were conducted. First, we
compared the modeling fit and GCA–brain correlation between
the two types of factor models: the Spearman model and the
bifactor model. Second, we systematically compared task vs. rest-
ing fMRI and different preprocessing parameters on the predic-
tion of GCA. Third, we estimated GCA by randomly sampling
different numbers of tasks to examine whether more tasks would
enhance the reliability and validity of GCA estimation, as well as
greater and more reliable brain–GCA association. Finally, using

the most reliable estimate of GCA and the best neural data and
preprocessing parameters obtained by an independent task (i.e.
RAMP), we carefully examined the neural correlates of GCA. Our
results suggest that the bifactor model from a larger number of
cognitive tasks could yield reliable estimation of GCA and that
task fMRI yielded stronger predictability and more interpretable
neural correlates than did resting-state fMRI. Our results not only
contribute to a better understanding of the neural correlates of
GCA but also have significant methodological implications for
future studies.

Method
Participants
The participants were from the Cognitive Neurogenetic Study of
Chinese Young Adults Project (Feng et al. 2020, 2022), in which
more than 2,500 Han Chinese young adults from Beijing and
Chongqing were recruited and 2,236 of them had behavioral
data. In this analysis, we only included participants with high-
quality data, which were defined as (i) the correct rate for each
task was above chance level (Feng et al. 2022) (see Behavioral
Tasks Description in the Supplementary Text for some special
treatments for certain tasks), and (ii) the performance score was
not classified as an outlier based on the boxplot method (Tukey
1977). Based on the above criteria, 631 participants who had more
than 20% missing data, i.e. 4 invalid/missing scores out of the 20
scores were excluded from final analysis. Of the 1,605 participants
(male = 667; mean age = 20.8, SD = 2.1, range: [16.8, 30.8]) who had
high-quality behavioral data, 682 (male = 263; mean age = 21.0,
SD = 2.2, range: [17, 29]) also had high-quality resting-state and
task-state fMRI data. All participants gave written consent to
the study and were paid for their participation. This study was
approved by the Institutional Review Boards of Beijing Normal
University and Southwest University, China.

Procedures and materials
Tasks used to measure GCA
We chose 19 commonly used tasks to tap a wide range of cog-
nitive abilities, including working memory (WM), complex spans,
attention, episodic memory, inhibition, shifting, and reaction time.
One of these tasks (i.e. Penn Continuous Performance Test [PCPT])
produced two indicators (i.e. median reaction time and sensitivity
index (d’)), resulting in a total of 20 task performance indicators.
Additionally, the classic intelligence measure, RAPM, was utilized
for validation purposes.

Specifically, six tasks from WM domain were orientation
change detection task, letter 3-back task, spatial 2-back task, keep
track task, operation complex span task, and symmetry complex
span task (SSPAN); three tasks from inhibition domain were
anti-saccade task, stop signal task, and Stroop task; three tasks
from shifting domain were number-letter switching task, color-
shape switching task, and size-life switching task (SLST); three
tasks from episodic memory domain were face–name associative
memory task (FN), Korean symbol recognition task (KS), and
mnemonic similarity task; four tasks from speed and attention
domain were simple Reaction Time, choice Reaction Time (CRT),
PCPT, and Penn line orientation test. Detailed descriptions of all
these tasks can be found in Supplementary Text.

N-back task during MRI scanning
During the scanning session, the participants performed a digit
n-back task, spanning from 0-back to 3-back. In the 0-back blocks,
the participants were required to evaluate whether the displayed
number was 7 or not. For the 1-back to 3-back blocks, they had to
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determine whether the presented number was identical to that
shown “n” trials ago (n = 1, 2, or 3). The overall run comprised four
blocks of each type of n-back trials, resulting in a total of 16 blocks.

Experimental procedures
The participants performed all behavioral tasks in a computer lab.
The experiments were conducted under the supervision of 15–20
experimenters, with each experimenter overseeing 2 participants.
The test lasted ∼6 h and was divided into a morning and an
afternoon session of roughly equal length.

The estimation of GCA score
The “lavaan” (0.6–15) package (Rosseel 2012) and “psych” (2.3.6)
package (Revelle 2023) in R (4.3.1) software (R Core Team 2023)
were used to estimate the GCA scores. We fitted two types of
factor models of GCA, i.e. the Spearman model and the bifac-
tor model (Barbey et al. 2021, p. 8). For the bifactor model, we
split the whole data into two equivalent subsamples using the
“SOLOMON” method (Lorenzo-Seva 2021) to avoid potential biases
introduced in the splitting process. The first subsample was then
used to explore the number of group factors and the structure
of factors. Parallel analysis and empirical BIC criterion were used
to determine the number of factors. Based on the results of
the exploratory factor structure, we did a confirmatory factor
analysis on the second subsample to evaluate the goodness of
model fitting. Since χ2 statistic is almost always statistically
significant for data with a large sample size, we assessed model
fit using the following fit indices: Root Mean Square Error of
Approximation (RMSEA), Standardized Root Mean Square Resid-
ual (SRMR), Comparative Fit Index (CFI), and Tucker–Lewis Index
(TLI). Values of RMSEA and SRMR less than 0.05 and values of CFI
and TLI greater than 0.95 are considered good (Hu and Bentler
1999). Considering missing data and estimation efficiency (Enders
and Bandalos 2001), we used a full-information maximum likeli-
hood (FIML) estimator so that factor scores could be estimated
for all participants in the CFA subsample. Then, we used the
“regression” method to estimate the latent factor scores from
the fitted model, yielding GCA scores for all participants in this
subsample. After confirming the adequacy of the bifactor model,
we refitted it to the total sample to generate GCA scores for all
participants. In addition, because the widely accepted Cattell–
Horn–Carroll (CHC) theory of intelligence utilizes a high-order
hierarchical model (Carroll 1993), we also fitted a high-order
hierarchical model (CHC model) as a comparison to the bifactor
model.

To examine the effect of the number of tasks on the reliability
of GCA score estimation, we randomly split the tasks into
two sets and sampled 3–10 tasks in each set, estimated the
GCA scores using the Spearman model described above, and
examined the reliability of the two estimates using Pearson
correlation. (The bifactor model was not used in this analysis
because of the reduced number of tasks for each analysis, which
makes it impractical to include group factors.) This procedure
was repeated 100 times. After that, we fitted the relationships
between the magnitude of correlations and the number of
tasks with a BoxBOD regression model (Box et al. 2005, Chapter
10), a curve with a saturation value of β1 and a slope value
of β2

y = β1
(
1 − e−β2x)

fitted curve was used to predict the correlations if more tasks had
been included.

MRI data collection and processing
MRI data acquisition
Neuroimaging data were collected using 3.0 T Siemens MRI
Trio scanners at the Brain Imaging Centers of Beijing Normal
University and Southwest University. During resting state scan-
ning, participants were instructed to close their eyes and avoid
engaging in any specific thoughts. During task state scanning,
they were asked to perform an n-back task (see Behavioral task
section for more details).

We used a one-shot T2
∗-weighted gradient-echo, echo-planar

imaging (EPI) sequence for functional scanning. Parameters for
Beijing and Chongqing sites were generally equivalent to each
other. For resting state, the following parameters were used: repe-
tition time = 2,000 ms; echo time = 30 ms; flip angle = 90◦; field of
view = 200 × 200 mm2 (Beijing) and 220 × 220 mm2 (Chongqing);
64 × 64 matrix size with a resolution of 3.1 × 3.1 mm2 (Beijing)
and 3.4 × 3.4 mm2 (Chongqing), 3.0 mm (Beijing) and 3.5 mm
(Chongqing) transverse slices. A total of 200 (Beijing) and 242
(Chongqing) brain volumes (time points) were acquired.

For the n-back task, the parameters were the same as those
for the resting state scan except the in-plane resolution, i.e.
64 × 64 matrix size with a resolution of 3 × 3 mm2 (Beijing) and
3.4 × 3.4 mm2 (Chongqing). The slice thickness was 3.0 mm in both
sites. A total of 226 brain volumes were acquired in both sites.

fMRI data preprocessing and network construction
We used GRETNA tools (Wang et al. 2015) and the AFNI software
(Cox 1996) to preprocess the fMRI data according to the standard
steps, including deleting the first 10 EPI volumes, slice-timing
correction, realigning, normalization, adjusting for the nuisance
covariates, and removing linear trends using temporal filters
(a band-pass of 0.01–0.1 Hz) in a single regression model. The
included nuisance covariates were the global signal, the aver-
age signal of the white matter and the cerebrospinal fluid, and
the 24 motion parameters. More detailed information about the
imaging preprocessing can be found in our previous study (Feng
et al. 2022). All the subsequent analyses and visualizations were
performed in MATLAB (The MathWorks Inc. 2023), R, and Python
(Python Core Team 2019).

Functional parcellation and network construction
The Shen’s 268-node (Shen268) atlas (Shen et al. 2013) was applied
to the preprocessed fMRI data. After parcellation, we calculated
Pearson correlations between time series of each node-pair and
the correlation coefficients were then Fisher transformed, result-
ing in two 268 × 268 connectivity matrices for each subject. We
kept the upper triangular values only (i.e. the unique 35,778 edges)
and standardized them within each participant to control for
the differences in scanning parameters. We also included latent
connectivity patterns, which integrated the n-back task and rest-
ing state conditions. Specifically, we extracted the first principal
component from the two connectivity matrices of each edge
generated from the task and resting state fMRI data, resulting in a
latent connectivity pattern (McCormick et al. 2022). This method
is preferred over directly averaging the two functional connec-
tivity patterns because principal component analysis calculates
weights for each pattern so as to provide a better summary of
the two patterns. To avoid any bias introduced by scan durations,
we truncated the Chongqing data by keeping the first 200 brain
volumes only; and when comparing performances of different
fMRI conditions, we also truncated the n-back task fMRI data
by keeping the first 200 brain volumes. We also used Power’s
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264-node (Power264) parcellation scheme (Power et al. 2011) and
applied the same processing procedure to construct functional
connectivity network in order to replicate the results.

For Shen268 atlas, we used the same spectral clustering algo-
rithm to assign these 268 nodes to 8 canonical networks (Shen
et al. 2013, 2017), and the subcortical–cerebellar network was
further split into 3 networks (Noble et al. 2017), resulting in 10
networks. These networks are named based on their approx-
imate correspondence to previously defined resting-state net-
works as medial frontal (MF), frontoparietal (FP), default mode
(DMN), motor (Mot), visual I (VI), visual II (VII), visual association
(VAs), limbic (Lim), subcortical (Sub), and cerebellum (CBL).

Predicting GCA with functional connectivity
patterns
Utilizing a connectome predictive modeling (CPM) protocol (Shen
et al. 2017), we employed functional connectivity patterns to pre-
dict GCA score and investigated the underlying neural substrates.
Briefly, we applied a 10-fold cross validation to predict GCA in
the left-out participants. First, to select the edges, the strength
of each edge was correlated with GCA with age, gender, and mean
framewise displacement as covariates. This procedure generated
the “positive correlated network” (Pos-Cor Networks) using the
edges showing high positive correlations with GCA, and the “anti-
correlated network” (Anti-Cor Networks) using the edges show-
ing high negative correlations with GCA. Following Greene et al.
(2018), we tested different thresholds in this step. Two different
thresholding methods (“alpha” level of correlation and “sparsity”)
and different levels (P < 0.05, P < 0.01, P < 0.005, P < 0.001; 1%, 2.5%,
5%, 10%) were included.

Next, separately for Pos-Cor and Anti-Cor Networks, the edge
strengths were first standardized (to avoid biasing the test fold)
across participants and then summed for each participant in
the training folds, yielding two summary statistics for each par-
ticipant in each fold. Linear regression models were utilized to
evaluate the correlation between network strength and GCA in
the training folds, and 3 such models were built: one for Pos-Cor
networks, one for Anti-Cor networks, and one for both networks
(i.e. two predictors, named as Combined model).

Finally, for participants in the testing fold, the edge strengths
were also standardized based on the corresponding data in train-
ing fold and then the same summary statistics were calculated for
each participant. These summarized statistics were submitted to
the corresponding models to predict GCA for these participants.

Model performance was evaluated by Pearson correlation
between the model-estimated GCA and true GCA. To improve
the robustness of results, this procedure was repeated 20 times
for each model and condition, and the mean performance scores
(Fisher transformed before averaging and transformed back after
averaging) are reported.

The stability of brain–GCA association using dice
similarity
To examine the stability of brain–GCA association in the CPM
analysis, we examined whether the contributing edges are con-
sistent across the two splits of tasks (see above). Because we did
10-fold cross-validation for each model for 20 times, there were a
total of 200 edge selections. Consequently, the contributing edges
were determined based on the probability (i.e. 0.5, 0.8, 0.95, 0.99)
of being selected across the 200 selections. For example, if the
probability is set at 0.95, then an edge must be selected at least
190 times to be included in the contributing edges. For simplicity,

we kept the threshold level at 0.01 during model construction in
this analysis.

We then calculated the dice similarity (Feng et al. 2022)
between the contributing edges across the two randomly split
task sets. For the two sets of selected edges X and Y, dice similarity
can be calculated with the following formula:

DSC = 2 |X ∩ Y|
|X| + |Y| ,

where |X ∩ Y| represents the number of overlapping edges
between X and Y, and |X| and |Y| are the numbers of edges in
X and Y, respectively. We calculated them separately for Pos-Cor
Networks and Anti-Cor Networks and averaged across these two
networks.

The enrichment pattern of the contributing edges
To delineate the neural substrates of GCA, we next sought to
understand the enrichment pattern of networks to which the
contributing edges belong, as well as the brain regions where the
connected nodes were located. These results for GCA were then
compared with those for RAPM.

First, we sought to understand how the contributing edges were
distributed among the 10 canonical networks. Considering that
the number of nodes for networks differs significantly (ranging
from 9 nodes in VII network to 51 nodes in Mot network, see
Table S2 for the number of nodes in each network), we calculated
the enrichment value for each pair of networks (Greene et al.
2018). Specifically, for each pair of networks, we calculated the
proportion of contributing edges belonging to this pair to the
number of whole contributing edges, then normalized it by the
fraction of total edges belonging to this pair in the whole Shen268
atlas. Formally, for network pair A and B:

enrichA,B = nA,B/ntotal

EA,B/Etotal
,

where enrichA,B is the enrichment value of network pair A and B,
nA,B is the number of contributing edges between network A and B,
ntotal is the total number of contributing edges, EA,B is the number
of edges between network A and B in the atlas, and Etotal is the
total number of edges in the atlas. The results are visualized as
matrices with upper triangle in Fig. 5A.

Next, we quantified that the number of times each node was
connected by the contributing edges, separately for GCA and
RAPM, resulting in 2 (i.e. Pos-Cor and Anti-Cor Networks) edge
counts vectors of length 268. We visualized them as markers
in a glass brain by “nilearn” package (Abraham et al. 2014) in
Python (Fig. 5B), with darker color representing a larger number
of edges. Considering that the edge counts vectors were not
normally distributed, we calculated Spearman correlation coef-
ficients to estimate the similarity of edge counts vectors between
GCA and RAPM.

Results
Descriptive statistics, correlations between task
indicators, and factor models
Descriptive statistics of the 20 indicators of task performance
are provided in Table S1. The scores pertaining to reaction
times (such as median reaction time, inverse efficiency score,
etc., see Methods for details of each task) were transformed by
reversing the sign (e.g. −1 to 1 and vice versa), so that higher
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Table 1. Main fit indices for factor analysis models involving all 20 task indicators.

Model χ2 df RMSEA SRMR CFI TLI

Spearman 1,616.8 170 0.07 0.07 0.64 0.60
Bifactor 257.4 150 0.03 0.03 0.95 0.93
CHC 472.5 166 0.05 0.05 0.85 0.83

Notes: χ2: chi square, df: degree of freedom, RMSEA: Root Mean Square Error of Approximation, SRMR: Standardized Root Mean Square Residual, CFI:
Comparative Fit Index, TLI: Tucker–Lewis Index.

scores indicate better performance. All task indicators exhibited
normal distribution (Fig. S1) and their internal consistency
reliabilities ranged from satisfactory to high (0.62 to 0.98) except
that of SLST (alpha = 0.53) (Table S1).

Considering the missing data (see Fig. S2 for visualization of
the missing pattern), we presented pairwise correlations among
task indicators. The 190 correlations had a mean of 0.12 and
ranged from −0.06 to 0.50, and only six of them (3%) were slightly
but not significantly smaller than 0, indicating the presence of a
“positive manifold” (Fig. 1A) (Spearman 1904). Based on this, we
fitted a one-g-factor model with no group factors (i.e. Spearman
model) using the FIML method, which allowed us to derive the
factor scores of the latent factor as GCA scores using regression-
based weights. The FIML method also allowed us to attribute GCA
scores to participants with missing data. The GCA factor from the
Spearman model, namely “GCA-S,” accounted for a substantial
proportion, i.e. 71.1% (ωh) (McDonald 1999; Zinbarg et al. 2006),
of the total variance (Fig. 1C). However, the fit indices for the
above Spearman model were not ideal (first row of Table 1):
RMSEA = 0.07, SRMR = 0.07, CFI = 0.64, TLI = 0.60.

To test the bifactor model, we utilized empirical BIC criteria
to explore potential underlying structure with group factors for
all 20 task indicators. The exploratory factor analysis on the first
subsample demonstrated that a four-factor structure fit the data
well (Fig. 1B). Subsequently, the confirmatory bifactor analysis on
the second subsample using the same structure from exploratory
factor analysis revealed that a model comprising a general factor,
i.e. “GCA-B,” and four group factors provided a satisfactory fit
to the data (second row of Table 1, see visualization in Fig. 1D).
These four factors were identified and interpreted as follows:
processing speed (Speed), WM, learning and memory (Memory),
and mental shifting (Shifting). Using the bifactor model, the fitting
parameters improved significantly: RMSEA = 0.03, SRMR = 0.03,
CFI = 0.95, and TLI = 0.93. The GCA factor, represented by “GCA-B,”
accounted for 55.1% (ωh) of the total variance across all the task
indicators. Notably, the correlation between GCA-S scores and
GCA-B scores was 0.939, suggesting that different factor models
provide highly consistent estimation of GCA.

As a comparison to the bifactor model, an alternative hierar-
chical model (the CHC high-order hierarchical model) was run
using the same grouping structure as the bifactor model. The CHC
model also showed better fit indices than did the Spearman model
(third row of Table 1, see visualization in Fig. S3), but it showed
significantly poorer than did the bifactor model: RMSEA = 0.05,
SRMR = 0.05, CFI = 0.85, and TLI = 0.83. The g factor of the CHC
model accounted for 60.7% (ωh) of the total variance across all
the task indicators. The correlation between the g factor scores
based on this model and GCA-B was 0.947, demonstrating again
the consistency among different GCA estimation methods. Con-
sidering that the bifactor model and the CHC model are both
hierarchical factor models and that the bifactor model showed
better fit indices, we reported the results from the bifactor model
only in the rest of the article to avoid redundancy.

Improved estimation of GCA with more tasks
The above analysis provides compelling evidence that the selected
tasks are well-suited for the g factor model. Next, we investigated
whether incorporating more tasks yielded better estimation of
GCA, i.e. higher reliability and validity. To assess the reliability,
we randomly split the task indicators into two sets and estimated
GCA in each set with varying numbers of tasks, ranging from 3
to 10. The results revealed that the median Pearson correlation
coefficient between the GCAs of the two split samples showed a
remarkable increase from 0.23 (SD = 0.114) with three tasks to 0.57
(SD = 0.073) with 10 tasks, indicating an average gain of 0.045 for
each additional task in the estimation (Fig. 2A). Using a BoxBOD
regression model, we found that with about 40 tasks, we can
achieve a peak reliability of 0.8.

To examine the validity of GCA estimate, we investigated
whether the GCA estimated from more tasks would show
increased correlation with the RAPM performance. We generated
the GCA-S scores based on 3–18 task indicators, each with 100
times of random selections. The median correlation coefficient
between the GCA-S scores and RAPM performance increased from
0.25 (SD = 0.091) with 3 tasks to 0.36 (SD = 0.054) with 10 tasks,
and to 0.39 (SD = 0.020) with 18 tasks. When all 20 task indicators
were used, the correlations were 0.40 between GCA-S and RAPM
and 0.42 between GCA-B and RAPM (Fig. 2B). Using a BoxBOD
regression model, we found that the predicted peak correlation
between GCA and RAPM was 0.39. In other words, there appear to
have little additional gains in the strength of GCA’s association
with RAPM beyond 18 tasks. Such a modest level of association
seems to suggest that GCA and RAPM reflect overlapping but
different cognitive functions.

In addition to using RAPM as the criterion variable, we also
conducted additional analyses using the GCA estimated from
all 20 task indicators (both GCA-S and GCA-B) as the criterion
variables. The correlations between GCA scores from select task
indicators and those from the total 20 task indicators increased
steadily with increasing number of task indicators (Fig. S4). The
correlations with GCA-S of 20 task indicators were generally
higher than those with GCA-B, replicating the pattern found
with RAPM as the criterion variable. Finally and not surprisingly,
these correlations (relying on the same pool of task indicators)
were also higher than those between GCA scores from select
task indicators and RAPM (which was an independent criterion
variable).

It should be noted that the above analyses did not consider
factor loadings when selecting task indicators. Tasks such as
CRT, anti-saccade, and symmetry complex span had the highest
loadings on GCA (Fig. S5A). Indeed, if we used the 5 tasks with
the highest loadings, they would account for 84.5% of the total
variance of GCA, whereas if we used the 5 tasks with the lowest
loadings, they would account for only 7.5% of the total variance
of GCA (Fig. S5B). In our analyses using the top 10 tasks (with
the highest factor loadings), we achieved an averaged reliability
of 0.52 with just 5 of those tasks, whereas using the bottom 10
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Fig. 1. Latent structure of all 20 task indicators. A) Correlation matrix of all task indicators. Darker color indicates larger differences from 0. A pairwise
method was used because of missing values. The meaning of task abbreviations can be found in Methods section. We included two indicators for the
PCPT task and used “.” to separate the task name and the indicator name. B) Empirical BIC for different numbers of factors suggested a 4-factor solution.
C) Structure of the Spearman model (i.e. no group factors). D) Structure of the bifactor model, with a general factor, i.e. GCA-B, and four group factors,
i.e. speed: processing speed; WM: working memory; memory: learning and memory; shifting: mental shifting.
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Fig. 2. The influence of the number of tasks on GCA estimation. Results were based on the 100 times resampling, and the black dots with long-dashed
line were the predictions based on BoxBOD regression. A) Each gray dot represents the Pearson correlation between the GCA scores estimated from each
pair of resampled tasks. B) Each gray dot represents the Pearson correlation between the GCA-S score and RAPM. For 3–10 task indicators, there were
200 dots because of the paired sampling. For 11 or more task indicators, there were 100 dots. Horizontal dashed lines represent the correlations between
the two types of GCA scores and RAPM scores. GCA-B: GCA estimated from all task indicators by the bifactor model; GCA-S: GCA estimated from all task
indicators by the Spearman model.

tasks, we could only achieve an averaged reliability of 0.21 with 5
tasks (Fig. S5C).

In sum, these findings suggest that the inclusion of more tasks
would lead to significantly enhanced reliability and validity of
GCA estimation and that using tasks with high factor loadings on
the g factor would also improve the validity of GCA estimation.

Determining the best parameters for brain–GCA
association
The above analyses based on behavioral data showed that more
tasks led to more reliable and valid estimation of GCA. In the fol-
lowing analyses, we further examined this issue with neural data.
That is, if the inclusion of more cognitive tasks could increase
the validity and reliability of GCA, we should find greater, more
reliable, and more interpretable brain–GCA associations.

First, because the method we employed to measure brain–GCA
associations (i.e. connectome-based predictive modeling or CPM)
involves two different threshold methods (“alpha” and “sparsity”),
we first needed to determine the best method and threshold
(see Methods). We used an independent behavioral index (i.e.
RAPM) for this purpose. The results indicated that the two thresh-
old methods were generally comparable to each other and that
the predictive performance improved slightly when using a less
conservative threshold (i.e. more edges included) (Fig. 3A). Con-
sidering both predictive performance and the conventions in this
field, we ultimately chose the “alpha” method with a level of
P < 0.01.

Second, we used RAPM to determine the best neural data and
processing parameters (i.e. global signal regression or GSR) that
could predict cognitive performance. Previous studies have shown
that both resting-state functional connectivity (FC) and task-state
FC could predict domain-specific and general cognitive abilities,
with generally higher prediction from task-state FC. We aimed
to replicate these findings with our data. Besides task-state and
resting-state FC, we also estimated the latent FC pattern (i.e.
labeled as the latent condition), which integrated information

from both task and resting fMRI (see Methods). We found that
the n-back task outperformed all other conditions, including the
latent condition (Fig. 3B). In addition, GSR generally enhanced
the performance of models (Fig. 3B). These results were repli-
cated when using Power’s 264-node atlas, although the average
correlations based on Power’s 264-node atlas were lower than
those based on the Shen268 atlas (Fig. S6). Based on these results,
the following analysis will use n-back fMRI data with GSR and
the Shen268 atlas, with an “alpha” threshold of P < 0.01, except
otherwise noted.

More tasks were associated with greater and
more reliable brain–GCA association
For each sample of the 3–18 task indicators, we evaluated the
neural predictability of the GCA scores using CPM. The results
suggest that as more task indicators were used to estimate
the GCA-S (Fig. 4A), the median scores increased from 0.19
(SD = 0.09, ranging from 0.02 to 0.41) with 3 task indicators, to 0.30
(SD = 0.06, ranging from 0.12 to 0.41) with 10 task indicators, to
0.34 (SD = 0.02, ranging from 0.29 to 0.36) with 18 task indicators.
Notably, the GCA-S scores estimated from all task indicators
showed comparable predictability of the RAPM score, while GCA-
B scores exhibited relatively lower predictability (rGCA-S = 0.333,
rGCA-B = 0.287, rRAPM = 0.327).

Furthermore, we examined the reliability of brain–GCA
association by calculating the dice similarity of the “contributing
edges” from the two sets of tasks. For each set, our CPM protocol
generated a total of 200 edge-selection results (see Methods).
The contributing edges were defined as those that were selected
190 times (i.e. P of 0.95) or above across the 200 selections. As
predicted, the dice similarity also increased with more tasks.
Specifically, the median dice similarity increased from 0.03
(SD = 0.08) with 3 task indicators to 0.30 (SD = 0.12) with 10
task indicators. These results were also replicated when using
different brain parcellation schemes and different edge selection
criteria (Fig. S7).
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Fig. 3. Determining the best CPM hyperparameters and fMRI data parameters for brain–GCA association using RAPM. Results were based on 20 times
cross-validation using the Shen268 atlas. A) Boxplot of the CPM performance with different feature selection threshold hyperparameters using functional
connectivity patterns from task-state with GSR. B) Boxplot of the CPM performance with different task conditions and different GSR manipulations.
Results were based on the “alpha” threshold of P < 0.01.

Fig. 4. More tasks were associated with greater and more reliable brain–GCA association. A) Distribution of brain–GCA association based on different
numbers of task indicators. The horizontal lines represent the CPM performance for the two types of GCA scores and RAPM scores. B) The degree of
overlapping contributing edges (dice similarity) between pairs of models with different numbers of task indicators. The dice similarity was averaged
across Pos-Cor networks and Anti-Cor networks (see Methods).

Comparing the neural substrates of GCA between
different models
Having identified the best parameters for brain–GCA association
and shown that more tasks led to greater and more reliable brain–
GCA association, we then included all tasks and used the best
parameters to examine the neural correlates of GCA, by compar-
ing the Spearman and bifactor models and relating these results
to RAPM. Specifically, we inspected the “contributing edges” (i.e.
edges that were selected 95% times) determined by the CPM
scheme to understand how different brain networks contributed
to GCA.

As there was a large correlation between GCA-S and GCA-B,
the model-selected edges between them also largely overlapped
(Pos-Cor Networks: DSC = 0.57, Anti-Cor Networks: DSC = 0.55).
However, although GCA-B showed a slightly larger correlation
with RAPM than did GCA-S behaviorally, the overlap of selected
edges between GCA-B and RAPM (Pos-Cor Networks: DSC = 0.15,
Anti-Cor Networks: DSC = 0.24) was smaller than that between
GCA-S and RAPM (Pos-Cor Networks: DSC = 0.30, Anti-Cor
Networks: DSC = 0.35).

Additionally, utilizing 10 functional networks derived from
previous studies (Methods), we inspected the enrichment patterns
of the contributing edges within and across the canonical
functional networks. We quantified the enrichment patterns
of the contributing edges in a way that a value larger than
1 indicated a disproportionate (i.e. enriched) contribution of
the network pair (Methods) (Fig. 5A). For Pos-Cor Networks, the
top 10% overrepresented network pairs in the two GCA models
were highly consistent, including those within the Mot network,
the FP network, and between VII network and CBL network.
In contrast, the RAPM involved the network pairs between the
MF network and VAs network, between the Mot network and
VAs network, and within DMN network. This indicates that
the GCA models show a larger involvement of frontal regions
and less involvement of visual regions than did the RAPM
model.

For the Anti-Cor Networks, the three models showed very con-
sistent top 10% overrepresented network pairs, including those
between the MF network and CBL network, and between the Mot
network and CBL network.

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/34/2/bhad510/7511993 by Beijing N

orm
al U

niveristy user on 12 April 2025



Zhang et al. | 9

Fig. 5. Contributing edges were widely distributed among different networks and showed comparable results among three intelligence/GCA measures.
A) Visualization of proportional contribution for each pair of assigned networks. See functional parcellation and network construction for full names of
the networks. B) Visualization of edge counts distribution of all nodes with markers on the whole brain.

In another analysis, we examined the nodes that contributed to
the prediction of GCA and RAMP (See Methods). The high similar-
ity between models of GCA-S and GCA-B was again confirmed by
the high correlation of edge counts of nodes (Fig. 5B) (Pos-Cor Net-
works: ρ = 0.79, Anti-Cor Networks: ρ = 0.81). The nodes pattern
was more similar between GCA-S and RAMP than between GCA-
B and RAMP (Pos-Cor Networks: ρGCA-S = 0.49, ρGCA-B = 0.27, one-
tailed Pdiff = 0.002; Anti-Cor Networks: ρGCA-S = 0.54, ρGCA-B = 0.42,
one-tailed Pdiff = 0.03). Additionally, across the three measures, the
hub nodes, i.e. nodes with the most contributing edges, for Pos-
Networks were mostly from the frontal and parietal regions, while
the hub nodes for Anti-Networks were mostly from the temporal
and cerebellar regions (see Table S3 for top 10 nodes).

Discussion
Since most cohort studies incorporate multiple cognitive tasks but
not standard intelligence tests, researchers have tried to use GCA
to index general intelligence by fitting factor models on various

cognitive tasks (Cox et al. 2019; Dubois et al. 2018; Thompson
et al. 2019). In current research, we aimed to verify whether GCA
is a valid index of general intelligence (which was measured by
RAPM) and investigate the effects of the number of cognitive tasks
and modeling methods on GCA estimation accuracy, using both
behavioral and neural data.

Our results provide important evidence that the cognitive tasks
that were designed to identify specific cognitive processes could
measure GCA with significant reliability, but the accuracy of GCA
estimation is influenced by number of tasks (an average reliability
of 0.5 for 10 tasks, and an expected average reliability of 0.8 for 40
tasks). These results extend previous studies which have shown
that a large battery of IQ test could lead to better measurement
of g (Floyd et al. 2009; Major et al. 2011) and that greater cross-
battery correlations has been found for batteries with more tasks
(Johnson et al. 2004, 2008).

More importantly, by integrating neural data, we found that
GCA estimates from more tasks showed greater and more reli-
able brain–GCA association results. This finding provides neural
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evidence that good GCA estimation depends on a large battery size
and that the reliability of GCA measurement affects the effect size
(and its stability) of the brain–behavior association (Gignac and
Bates 2017).

Moreover, using a highly accepted measure of general intel-
ligence (i.e. RAPM) (Burke and Bingham 1969; Roth 2021), we
found that criterion-related validity of the GCA estimates also
increases as battery size increases. However, the highest correla-
tions between GCA and RAMP are in the moderate level (r ≈ 0.4),
suggesting RAPM and GCA might measure partially overlapping
but also different aspects of human cognitive abilities (Gignac
2015). Consequently, we also used the GCA scores estimated from
all 20 task indicators as a criterion to evaluate the validity of GCA
estimates. As expected, the validity indices of GCA estimates in
such analyses were generally higher than those based on RAPM
(an independent measure) as the criterion variable. Importantly,
in the new analysis, the validity indices increased as the battery
size increased, just as in the analyses using RAPM as the criterion
variable. One potential caveat of this result is that our task battery
might not be large and diversified enough to achieve a close
estimation of the true GCA.

In addition, although it is predicted that 40 tasks (somewhat
impractical for an intelligence battery) are required to achieve
a reliability of 0.8 when choosing tasks at random, the number
of tasks required to achieve that level of reliability may decrease
when we consider the factor loadings of the tasks. We found that
some tasks, such as CRT, anti-saccade, and SSPAN, had higher
factor loadings on GCA than other tasks and that the use of these
tasks would yield more reliable estimation of GCA. Furthermore,
like many other large-sample cohort study, the current study
mainly chose tasks based on classic behavioral paradigms in cog-
nitive neuroscience to examine their underlying neural correlates.
These tasks were notably different from those used in the classical
CHC theory of intelligence. Future studies should further examine
how to optimize the task selections to better estimate GCA and its
neural correlates.

We found that the two factor models (Spearman and bifactor)
showed highly correlated GCA estimates and also highly overlap-
ping neural correlates, extending previous behavioral studies (Ree
and Earles 1991; Jensen and Weng 1994). We further found that
compared with the Spearman model, the bifactor model showed
better model fit and a larger correlation with RAPM. This is con-
sistent with recent studies showing that general factor loadings
are largely influenced by factor-extraction method (Floyd et al.
2009; Major et al. 2011) and suggests that the Spearman model
introduces certain contamination when the correlation matrix of
all variables has more than one common factor (Jensen and Weng
1994).

Another question of great interest is whether resting state or
task fMRI has better prediction of GCA. Recent studies consis-
tently found that task-induced brain state could better predict
behavior trait than could resting-state (Greene et al. 2018; Jiang
et al. 2020). This finding is consistent with the “treadmill test”
hypothesis that just as a treadmill test is preferred when mea-
suring cardiac function, cognitively demanding tasks activate the
brain in a way that would yield systematic individual differences
(Sripada, Angstadt, et al. 2020). Our results confirm that task-
induced brain state shows better prediction of GCA. However,
contrary to previous reports (e.g. Gao et al. 2019; McCormick et al.
2022), our study found that the integration of task-induced and
resting state neural data did not improve the prediction of GCA.
More research is needed to examine when and how the integration
of different types of neural data can improve the brain-cognition
correlations.

Using the best CPM parameters and functional connectivity
data from the n-back test, we further examined the neural cor-
relates of GCA. First, by examining the contributing edges of the
two types of GCAs (GCA-B and GCA-S) and RAPM, we found a
large overlap among them, consistent with Deary et al.’s (2010)
claim that “biological associations studies with different mea-
sures, regardless of single high g-loaded task or derived from
a battery of tests, are generally similar to each other.” Second,
consistent with previous reports (Duncan 2000; Santarnecchi et al.
2017; Dubois et al. 2018; Greene et al. 2018), GCA-related net-
works are widely distributed across the whole brain, suggesting
distributed neural correlates of GCA (Barbey 2018). Third, the hub
regions revealed by the edge counts pattern are mainly located in
the fronto-parietal regions, in agreement with the parieto-frontal
integration theory (P-FIT) of intelligence (Jung and Haier 2007).
Finally, there is also significant involvement of cerebellar regions,
emphasizing its prominent role in cognitive functions (Yoon et al.
2017; King et al. 2019; Schmahmann 2019).

Besides the similarities of neural correlates of the three mea-
sures (GCA-B, GCA-S, and RAPM), we also revealed several major
differences. First, the GCA estimated from the bifactor model (i.e.
GCA-B) shows relatively poorer prediction performance than does
either GCA-S or RAPM. One possibility is that, compared with the
general factor in the Spearman model, the general factor in the
bifactor model accounted for a smaller proportion of the total
variance, resulting in decreased correlations with brain networks.
Second, we found relatively larger contributions of frontal regions
to GCA-S and GCA-B than to RAPM, which is consistent with
findings about the key role of the frontal cortex in GCA (Duncan
2000, 2010). Finally, we found relatively larger contributions of the
visual networks to RAPM than to GCA, which might be due to the
fact that the RAPM task mainly involves visual patterns.

Several questions need to be further examined in future stud-
ies. First, our study used connectome-based predictive modeling
(CPM) as the tool to predict behaviors, which is easy to use and
facilitates interpretation of the modeling networks. Nevertheless,
the cross-validation used by this method might introduce some
bias because the GCA scores were first estimated based on all
participants (rather than only on the training and testing data
separately), which may lead to inflated prediction performance.
Additionally, the CPM method does not take graph-theory-based
measures into account, thus cannot examine how network prop-
erties (e.g. small-world) correlate differently among the measures
(Barbey 2018). In addition, although we included a relatively large
number of tasks in this study, our results suggest that they are
not sufficient to yield highly reliable GCA estimates. As predicted
in Fig. 2A and mentioned earlier, the correlation between test
batteries would go up to 0.8 with 40 or more tasks. Future work
could use a larger number of cognitive tasks from more cognitive
domains to generate more reliable GCA estimates and to further
examine the underlying neural correlates.

To conclude, our results demonstrated that GCA can be reliably
estimated by multiple cognitive tasks and that the quality of
measurement can be enhanced by adding more tasks and fitting
the bifactor model rather than the Spearman model. These results
have significant theoretical and methodological implications for
our understanding of the neural correlates of GCA.
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