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Abstract

Cross-modal prediction serves a crucial adaptive role in the multisensory world, yet

the neural mechanisms underlying this prediction are poorly understood. The present

study addressed this important question by combining a novel audiovisual sequence

memory task, functional magnetic resonance imaging (fMRI), and multivariate neural

representational analyses. Our behavioral results revealed a reliable asymmetric

cross-modal predictive effect, with a stronger prediction from visual to auditory

(VA) modality than auditory to visual (AV) modality. Mirroring the behavioral pattern,

we found the superior parietal lobe (SPL) showed higher pattern similarity for VA

than AV pairs, and the strength of the predictive coding in the SPL was positively cor-

related with the behavioral predictive effect in the VA condition. Representational

connectivity analyses further revealed that the SPL mediated the neural pathway

from the visual to the auditory cortex in the VA condition but was not involved in the

auditory to visual cortex pathway in the AV condition. Direct neural pathways within

the unimodal regions were found for the visual-to-visual and auditory-to-auditory

predictions. Together, these results provide novel insights into the neural mecha-

nisms underlying cross-modal sequence prediction.
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1 | INTRODUCTION

Making predictions in a multisensory world is critical for human sur-

vival, for example, the sound of a horn predicting an incoming car or

thunder following lightning. Indeed, neocortical perceptual processes

have been posited to be essentially multisensory (Ghazanfar &

Schroeder, 2006). Supporting this view, distributed brain regions are

found to be activated in cross-modal associative learning and memory,

including primary visual cortex and somatosensory cortex (Pillai

et al., 2013; Zhou & Fuster, 2000), frontoparietal regions (Ku

et al., 2015; Tanabe et al., 2005; Tibon et al., 2019; Zhang

et al., 2004), and the hippocampus (Borders et al., 2017; Butler &

James, 2011). For example, higher-order association areas exhibited

greater activation during the formation of audiovisual associations

than visual–visual associations (Tanabe et al., 2005). Furthermore,

recalling information from cross-modal associations elicited greater

hippocampal activity than unimodal associations (Butler &

James, 2011). Nevertheless, the neural representations of these
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regions under cross-modal sequence prediction are still barely

understood.

Focusing on unimodal sequence prediction, it has been found that

learning a fixed sequence of events enables the prediction of an

upcoming event, expressed as faster reaction times (Hsieh

et al., 2014). The prefrontal cortex (Jenkins & Ranganath, 2010;

Yokoi & Diedrichsen, 2019) and the hippocampus (Turk-Browne

et al., 2010) have been found to support unimodal sequence predic-

tion, showing strong activation during the retrieval of learned

sequences (Lehn et al., 2009; Ross et al., 2009).

The predictive coding theory has posited that making predictions

about a future event is accomplished by pre-activating its associated

representations (Bar, 2007; Clark, 2013; Friston, 2010), which then

shape our perception of future stimuli (de Lange et al., 2018). Sup-

porting this view, predictive representation reinstatement after asso-

ciative learning has been found in visual (Ekman et al., 2017; Kok

et al., 2017; Reddy et al., 2015; Senoussi et al., 2020), auditory

(Demarchi et al., 2019), and multimodal (e.g., movie) domains (Lee

et al., 2021; Paz et al., 2010). Another study found that after learning

the temporal regularity of successive events, the neural representa-

tion of the preceding items became increasingly similar to the follow-

ing ones, but not vice versa (Schapiro et al., 2012). However, how the

brain implements such predictive mechanisms to perform cross-modal

sequence prediction has not been elucidated.

Another question concerns the neural pathways underlying cross-

modal sequence prediction. Two candidate neural pathways have

been proposed for cross-modal processing, including direct pathways

between modality-specific regions and indirect neural pathways via

higher-order areas (Arnal et al., 2009; Driver & Noesselt, 2008). Ana-

tomical studies have found direct white matter connections and pro-

jections between primary sensory areas (Beer et al., 2011, 2013;

Bieler et al., 2017), which might underlie the cross-modal interaction

in modality-specific regions (Kayser & Logothetis, 2007). In addition,

some studies have found feedback influence from multisensory con-

vergence zones to sensory cortices (Macaluso et al., 2000;

Macaluso & Driver, 2005). How these neural pathways are differen-

tially involved in within-modal and cross-modal predictions remain to

be examined.

To address these questions, the present study employed a novel

audiovisual sequence memory paradigm, in which participants were

asked to perform pre- and post-learning semantic judgment tasks and

in between to learn word sequences that were presented in unimodal

or cross-modal formats. Behavioral results revealed a reliable asym-

metric cross-modal predictive effect, with a stronger prediction from

visual to auditory than auditory to visual. Using high-resolution func-

tional magnetic resonance imaging (fMRI) and multivariate pattern

similarity analyses, we found this asymmetric predictive effect was

supported by an indirect neural pathway from the visual to the audi-

tory cortex via SPL, but no such indirect pathway was found from the

auditory to the visual cortex. These results provide novel insights into

our understanding of the neural mechanisms of cross-modal

prediction.

2 | MATERIALS AND METHODS

2.1 | Participants

Twenty-one healthy college students (10 males, mean age = 22.4 years,

range = 18–26 years) participated in the fMRI study (Exp 1). Another

37 college students (4 males, mean age = 20.9 years, range = 18–

25 years) participated in the behavioral study (Exp 2). The sample size

of the fMRI study was comparable with that of several previous studies

using a similar paradigm (Bellmund et al., 2019; Hsieh et al., 2014). The

sample size of the behavioral study was determined by the power anal-

ysis conducted in the Gpower toolbox, which indicated that 36 subjects

could achieve 0.95 statistical power to detect a small effect size (0.25)

at the significance level of 0.05. All participants were right-handed, had

a normal or corrected-to-normal vision, and had no psychiatric or neu-

rological disease history. Informed written consent was obtained from

all participants after a full explanation of the study procedure. This

study was approved by the Institutional Review Boards of the Center

for MRI Research at Peking University and the State Key Laboratory of

Cognitive Neuroscience and Learning at Beijing Normal University.

2.2 | Materials

A total of 80 two-character Chinese nouns were used in the experi-

ment, including 40 words describing animate objects (e.g., dog) and

40 words describing inanimate objects from five subcategories

(8 words from each subcategory), including fruits (e.g., banana), tools

(e.g., knife), transports (e.g., train), musical instruments (e.g., guitar),

and household appliances (e.g., refrigerator) (Table S1). These stimuli

were divided into four groups of 20 words, each containing 10 words

describing living objects and 10 words describing non-living objects.

They were pseudo-randomly assigned to the four modality (visual

vs. auditory) and sequence type (fixed vs. random) combinations. The

assignment was counterbalanced across participants. The visual words

were presented in white color on a black background, with a width of

250 pixels and a height of 125 pixels. For the auditory words, the

voice was generated by the Text-to-speech (TTS) software Balabolka

(http://balabolka.site/balabolka.htm), where a female speaker pro-

nounced the words. Each word lasts 2 s with an intensity of 75 dB.

We constructed eight types of five-word sequences, including V-

V-V-V-V, V-V-A-A-V, V-A-A-V-V, V-A-V-A-V, A-A-A-A-A, A-A-V-V-A,

A-V-V-A-A, A-V-A-V-A (V refers to visual and A to auditory modality).

For the fixed sequences, the same words were assigned to each

sequence in the same order across repetitions. Whereas for the ran-

dom sequences, across repetitions, the same words were presented in

a different order while obeying the sequence structure (Figure 1a).

Particularly, the presentation modality of each word does not change

across repetitions for any sequence. With this design, we could effec-

tively match the fixed and random sequences in terms of sequence

structure and the familiarity of the materials. Although the words in

later positions of the random sequence sequences are more
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predictable than the initial words, making such predictions based on

sequence structure and previously presented items would require par-

ticipants to actively track that information in working memory, which

is very challenging. Our behavioral data suggest that participants

indeed did not, and perhaps could not, actively track that information

in random sequences to make such predictions about final items

(Figure S1).

2.3 | Experimental design

The experiment was performed on two consecutive days (Figure 1b).

On day 1, participants performed the pre-learning test and completed

the sequence learning task. On day 2, participants reviewed the

learned sequences and then performed the post-learning test. In the

fMRI study (Exp 1), the post-learning test was completed in the fMRI

scanner. In the behavioral study (Exp 2), the post-learning test was

conducted in the same room as day 1.

2.3.1 | Pre-learning test (day 1)

To assess baseline performance, participants were asked to perform

two pre-learning tests, namely the modality judgment task (auditory

vs. visual) and the semantic judgment task (living vs. non-living). The

order of the two tasks was counterbalanced between participants. In

each run of a given task, the 16 sequences (8 fixed and 8 random)

were pseudo-randomly concatenated using a Latin square design.

F IGURE 1 Experimental paradigm. (a) Sequence structures. Top: the same eight types of sequence structures were constructed for fixed and
random sequences. Bottom: two exemplar sequences for fixed (left) and random (right) sequences. (b) Schematic depiction of the overall
experimental procedure includes a pre-learning judgment task and a sequence learning task on day 1, a review task, and a post-learning semantic
judgment task on day 2. (c) Task structure for the learning phase of the sequence learning task. Each word in a sequence was sequentially
presented for 2 s, followed by a 0.5 s inter-stimulus interval (ISI). Participants were required to remember the sequence of their words. (d) Task
structure for the test phase of the sequence learning task. Five words in a sequence were simultaneously presented on the screen in their
learning modality but shuffled the order, and participants needed to reconstruct the sequence by typing the corresponding number into the text
box in the correct order. Please note that for the auditory word, only a sound icon was presented on the screen during both the learning and
testing phase, and the visual words were not presented to the participants. During the testing phase, participants could click the sound icon on
the screen, and the sound of that word would be played.

2420 SHI ET AL.
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Each word was presented for 2 s, and participants were required to

make a modality or semantic judgment by pressing ‘f’ or ‘j’ keys with

their left or right index finger. A 500 ms fixation stimulus was pre-

sented before the next trial started. The correspondence between

buttons and answers (“visual/auditory”, “living/non-living”) was coun-

terbalanced between participants. Participants performed four runs of

each task, with each run lasting approximately 3.5 min.

2.3.2 | Sequence learning task (day 1)

The sequence learning task started after the modality and semantic

judgment tasks. During the sequence learning task, participants were

required to learn all eight fixed sequences. In order to match the famil-

iarity of the stimuli, the eight random sequences were also included in

the sequence learning task. The only difference was that for the fixed

sequence condition, the word orders were fixed across all repetitions,

whereas in the random condition, they were randomized in each repe-

tition while still following the abstract audiovisual structure. The

learning task included a familiarization phase and then a study-test

phase.

During the familiarization phase, the words in a sequence were

presented one by one for 2 s with 0.5 s inter-stimulus-interval (ISI).

Participants were asked to memorize the sequence. Each sequence

was repeated three times before moving to the next sequence.

During the study-test phase (Figure 1c), participants first studied

and were then immediately tested on each sequence, and subse-

quently, their memory for all sequences was tested serially. During

the study phase, each word in a sequence was sequentially presented

to the participants for 2 s, followed by a 0.5 s inter-stimulus fixation.

Participants were instructed to remember the order of stimuli. After a

2 s interval, the five words were presented simultaneously on five dif-

ferent spatial locations of the screen in random order. The auditory

stimulus was shown as a sound icon, and the corresponding word

could be played out by clicking the icon. Participants were required to

reproduce the word sequence by typing the number corresponding to

each word into the text box in the correct order. Participants could

click any sound icon as many times as necessary and in any order

before they started to input the word order. Once participants con-

firmed their answers by pressing the “Enter” key, the sequence was

presented again as feedback.

Once all 16 sequences were studied in this fashion, participants

were tested on their memory. During the final testing phase

(Figure 1d), the 16 sequences were presented to participants in a ran-

domized order. All five stimuli of each sequence were presented on

the screen simultaneously, and participants were required to recon-

struct the correct sequence as described above. For the random

sequences, participants needed to make the response according to

the last presentation. No feedback was provided.

The study-test cycles continued until participants achieved 100%

accuracy for the fixed sequences, whereas the accuracy in the random

sequences was not considered. On average, participants required

3.57 ± 1.21 study-testing cycles to reach that criterion.

2.3.3 | Sequence review task (day 2)

On day 2, participants were first asked to review all 16 sequences

learned on day 1. During the review task, each stimulus in a sequence

was sequentially presented, and then all five stimuli were presented

simultaneously on the screen. Participants were asked to reconstruct

the sequence by typing the number corresponding to each word into

the textbox in the correct order. No feedback was provided in the

review task.

2.3.4 | Post-learning semantic judgment task in the
scanner (day 2)

After reviewing the sequences, participants performed the post-

learning semantic judgment task in the fMRI scanner (Exp 1). The pro-

cedures were similar to the pre-learning semantic judgment task,

except that the ISI was set to 4 s to better characterize the single-trial

BOLD response. During this interval, participants were asked to per-

form an orientation judgment where they needed to judge the orien-

tation of an arrow by pressing the corresponding key as quickly as

possible. Although this filler task might interfere and reduce with the

prediction, it could offer better control of participants' behaviors and

reduce the unexpected variance that might complicate the behavioral

patterns and interpretations. Besides, since the orientation judgment

task was used for all conditions (e.g., visual and auditory words in the

fixed and random sequences) and the predictive effect was obtained

by subtracting the response of the random sequence from that of the

fixed sequence, any influence caused by this filler task would be can-

celed out. A self-paced procedure was used to make this task engag-

ing. Participants finished 2.47 ± 0.67 orientation judgments per trial

interval. Each word stimulus was tested four times in four separate

runs of 8 min.

To replicate the results from Exp 1 and to further examine the

effect of ISI duration, we did an additional behavioral experiment (Exp

2). In this experiment, there were two types of post-learning semantic

judgment tasks: one task with 0.5 s ISI and one task with 4 s ISI. The

procedure of the post-learning semantic task with 0.5 s ISI was the

same as the pre-learning semantic judgment task, while the procedure

of the post-learning semantic task with 4 s ISI was the same as the

post-learning semantic task in the fMRI scanner. Each subject needed

to complete these two types of semantic tasks, and the test order was

counterbalanced across participants. Participants finished 2.45 ± 0.69

orientation judgments in the semantic task trials with 4 s ISI.

2.4 | MRI acquisition

MRI scanning was conducted on a 3 T Siemens Prisma scanner

(Siemens, Erlangen, Germany) with a 20-channel head coil at the Cen-

ter for MRI Research at Peking University. A high-resolution simulta-

neous multi-slice EPI sequence was used for functional imaging

(FOV = 224 mm � 224 mm, TR/TE/θ = 2000 ms/30 ms/90�, slice

SHI ET AL. 2421
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thickness = 2 mm, matrix = 112 � 112, slice acceleration factor = 2).

A 3D, T1-weighted MPRAGE sequence (FOV = 256 mm � 256 mm,

TR/TE/θ = 2530 ms/2.98 ms/7�, slice thickness = 1 mm,

matrix = 256 � 256) were used to obtain high-resolution structural

images. A high-resolution T2-weighed image using a T2-SPACE

sequence was acquired for hippocampus segmentation. The image

plane was perpendicular to the main hippocampal axis and covered

the whole MTL region (FOV = 220 mm � 220 mm;

matrix = 512 � 512; slice thickness = 1.5 mm; TR/TE/θ = 13,-

150 ms/82 ms/150�, 60 slices). A field map was acquired for correc-

tion of magnetic field distortions using a Gradient Echo sequence

(FOV = 224 mm � 224 mm; matrix = 112 � 112; slice

thickness = 2 mm; TR/TE1/TE2/θ = 620 ms/4.92 ms/7.38 ms/60�,

62 slices).

2.5 | Image preprocessing

Neuroimaging data were first converted to Brain Imaging Data Struc-

ture (BIDS) format (Gorgolewski et al., 2016). Image preprocessing

was conducted following the pipeline of FMRIPrep v1.4.0 (Esteban

et al., 2019). Functional images were slice-timing corrected using

AFNI v16.2.07 (Cox, 1996), motion-corrected using FSL's MCFLIRT

(Jenkinson et al., 2002), and registered to the T1 image using

boundary-based registration with nine degrees of freedom. Each T1

volume was corrected for intensity using N4BiasFieldCorrection

(Tustison et al., 2010) and skull-stripped using antsBrainExtraction.sh

(OASIS template), then normalized to the ICBM 152 Nonlinear Asym-

metrical template (version 2009c) through nonlinear registration with

the ANTs v2.1.0 (Avants et al., 2011). The images were temporally fil-

tered using a nonlinear high-pass filter with a 100 s cutoff. For univar-

iate analysis, images were spatially smoothed with a 6 mm full-width-

at-half-maximum (FWHM) Gaussian kernel using FSL's SUSAN and

normalized to MNI standard space. For representational similarity

analysis (RSA), images were aligned to participants’ T1 images and

kept in their native space. Slight spatial smoothing was also applied to

the data using a 2 mm FWMH Gaussian kernel to obtain a high signal-

to-noise ratio and anatomical specificity.

2.6 | Definition of regions-of-interest

Following previous studies, we focused our main analysis on the visual

cortex, auditory cortex, and higher-order association areas. Two

sensory-specific regions-of-interest (ROIs) were defined based on the

univariate activation analysis of the contrast between visual and audi-

tory modality: left ventral visual cortex (VVC) for visual word proces-

sing (Xue et al., 2006; Xue & Poldrack, 2007; Zhao et al., 2017), and

bilateral superior temporal gyrus (STG) for auditory word processing

(Calvert et al., 2000; Van Atteveldt et al., 2004). Three higher-order

ROIs were defined based on the Harvard-Oxford probabilistic atlas

(threshold at 25% probability), including bilateral superior parietal lobe

(SPL; Zhang et al., 2004, 2014), bilateral inferior parietal lobe (IPL,

consisting of the supramarginal gyrus and angular gyrus; Tibon

et al., 2019; Yazar et al., 2017), and bilateral middle frontal gyrus

(MFG; Regev et al., 2013).

2.7 | Hippocampal subfields segmentation

The hippocampus and surrounding medial temporal lobe were seg-

mented into CA1, CA2, CA3, DG, SUB, BA35/36, ERC, and PHC using

the automatic segmentation of hippocampal subfields (ASHS) toolbox

with the MTL-UPenn atlas (Yushkevich et al., 2015). The CA2, CA3,

and DG were combined (i.e., DGCA23) because they could not be

unambiguously distinguished. These masks were resampled and co-

registered to each subject's native space. As a result, four ROIs,

including left and right CA1, and DGCA23 (2 mm3 resolution, numbers

of voxels: left CA1 = 152.46 ± 20.41; left DGCA23 = 96.29 ± 13.86;

right CA1 = 153.68 ± 20.74; right DGCA23 = 105.93 ± 15.54), were

included in the further analysis.

2.8 | Univariate activation analysis

The general linear model (GLM) was constructed using the FILM mod-

ule of FSL (version 6.00). According to the sequence structure, each

word within its sequence structure was assigned to one type of eight

events according to three factors: predicting modality (visual

vs. auditory) � sequence type (fixed vs. random) � predicted modality

(visual vs. auditory). These eight types of events were modeled as

regressors of interest, and the orientation trials were modeled as

regressors of no interest. Both the eight task regressors and the

regressors of no interest were convolved with a double gamma hemo-

dynamic response function. The six motion parameters and the frame-

wise displacement (FD) were also included as confounding regressors.

In addition, each volume with an FD greater than 0.3 mm was sepa-

rately modeled as a censor regressor. Each run was modeled sepa-

rately in the first-level analysis. Cross-run averages for each contrast

image were created using a fixed-effects model for each subject.

These contrast images were then used for group-level analysis with a

random-effects model. Group-level statistical results were reported

using cluster detection methods, with a height threshold of z > 2.3

and a cluster probability of p < .05, corrected for whole-brain multiple

comparisons using Gaussian Random Field Theory.

2.9 | Single-trial response estimation

The least-square separate (LSS) method was used to estimate single-

trial response for each functional run (Mumford et al., 2012). Each trial

was estimated in a separate GLM, in which the trial was modeled as a

separate regressor, whereas all the other trials were modeled as

another regressor. We also included six movement parameters and

FD as confound regressors. Additional censor regressors were

included for each volume with an FD greater than 0.3 mm. This

2422 SHI ET AL.
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resulted in one t map for each trial, which was used for the represen-

tational similarity analysis.

Several methods have been proposed to correct for multiple noise

and biases in RSA (Cai et al., 2019; Diedrichsen et al., 2011; Walther

et al., 2016). In particular, multivariate noise normalization (i.e., pre-

whitening) has been shown to be effective in correcting the spatially

correlated noise between voxels, although its effect has been shown

to be varied in different brain regions and designs (Ritchie

et al., 2021). To evaluate the effect of multivariate noise normaliza-

tion, we respectively used the least-square all (LSA) method that all

trials were estimated simultaneously in a GLM, the LSA plus pre-

whitening (LSA_Prew) method, which uses multivariate noise normali-

zation with a regularized estimate of the spatial noise-covariance

matrix (Diedrichsen et al., 2016; Walther et al., 2016), and the LSS

method described above. To examine the reliability of each method,

we split the four runs into two run pairs and constructed an 80*80

(each runs had all 80 unique items) cross-run representational dissimi-

larity matrix (RDM) for each run pair. The reliability was measured as

the correlation between the two RDMs (i.e., second order correlation).

Since there were three ways to split the four runs, the three Fisher z-

transformed correlations were averaged to represent the overall reli-

ability. We found that the LSS method outperformed than the other

two methods in all ROIs (Figure S2). Therefore, the t image for each

trial derived from the LSS method was used for subsequent RSA.

2.10 | Representational similarity analysis

RSA was used to estimate the neural pattern similarity across trials

(Kriegeskorte et al., 2008). In our study, RSA was conducted within

the five pre-defined ROIs. All representational similarity analyses were

conducted between trials from different runs, which have been shown

to be less affected by the temporal autocorrelation of BOLD signals

(Alink et al., 2015; Henriksson et al., 2015). The T value from the

single-trial response estimate was extracted for each trial and each

voxel within the ROI, and Pearson correlation was used to quantify

the pattern similarity. Only correct trials were included in this analysis.

These Pearson correlations were then Fisher Z transformed for fur-

ther analysis.

To examine the sequence prediction representation and how they

were modulated by modality, we conducted RSA between two adja-

cent trials (that were 1 position apart, i.e., lag 1) for each type of tran-

sition, i.e., visual–Visual (vV), auditory–Auditory (aA), visual–Auditory

(vA), and auditory–Visual (aV) pairs, for the fixed and random

sequences, respectively. Again, it should be emphasized that the two

words in any combination were from different runs. This was enabled

by the design that each sequence was presented once in a run. We

first examined the sequence prediction effect in each condition sepa-

rately by comparing the pattern similarity of lag 1 pairs between fixed

and random sequences. Then, a predicting modality (visual

vs. auditory) by predicted modality (visual vs. auditory) ANOVA was

performed on the predictive effect to further examine the cross-

modal predictive effect.

2.11 | Representational connectivity analysis

Representational connectivity analysis was conducted to examine the

within- and between-regions informative connectivity across adjacent

trials (Anzellotti & Coutanche, 2018). As above, this analysis was also

conducted across runs so that the predicting words and the predicted

words were from different runs. We first calculated a representational

similarity matrix (RSM, 8 � 8) for the eight predicting words and eight

predicted words in each condition (i.e., vV, aA, vA, and aV), separately

for each fixed and random sequence and in each ROI (Figure 5a).

Then, second-order correlation analyses were performed to calculate

the informative connectivity between the two adjacent words, either

within or between regions. Specifically, we correlated the RSMs of

the predicting words in one region with the RSMs of the predicted

words in the same or different regions (Xiao et al., 2017). Non-

parametric permutation tests were performed to examine the group-

level significance of these representational connectivities by shuffling

one of the RSMs (8 � 8). Permutations were conducted 5000 times

and then averaged to obtain the baseline correlation coefficient under

the null hypothesis for each ROI and each subject. We also compare

the connectivity value between fixed and random sequences to deter-

mine whether there was significant informative connectivity across

adjacent words. Furthermore, we further conducted a sequence type

(fixed vs. random) by condition (vV vs. aA vs. vA vs. aV) ANOVA on

the empirical connectivity value to examine the condition-specific

property of informative connectivity.

2.12 | Statistical analysis

All t-tests and repeated measures ANOVAs in our analyses were con-

ducted by the afex package in R 4.1.2. We used type III sums of

squares and the Greenhouse–Geisser method to correct the degrees

of freedom. Error bars in the bar plot figures denote within-subject

errors that account for the heterogeneity of variance. FDR correction

was used for multiple comparisons between ROIs.

2.13 | Data and code availability

The code can be accessed via GitHub (https://github.com/leonepsy/

RSA_sequence_prediction). Both fMRI and behavior data are available

at the Open Science Framework: https://osf.io/dn6ty/.

3 | RESULTS

3.1 | Behavioral performance

Participants were required to make semantic judgments on sequen-

tially presented words before learning on day 1 and after learning on

day 2. Once participants learned the word sequences, they could pre-

dict the next word in the fixed sequence because the words were
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always presented in the same order. In contrast, they could not make

an accurate prediction for the random sequence because the words in

the random sequence were presented in random orders. Thus, we

predicted after learning, they would respond faster to words from the

fixed sequences than those from the random sequences (Hsieh

et al., 2014). We further predicted that this predictive effect would be

stronger when the preceding word was from the same modality

(i.e., within-modal prediction) than from a different modality

(i.e., cross-modal prediction). We only included the last four words in

each sequence in our behavioral analysis since the first word in a

sequence could not be predicted from a prior sequence.

The accuracy of the semantic judgment task in the fMRI experi-

ment was very high (88%–93%) and did not show a significant main

effect of task phase (pre- vs. post-learning), sequence type (fixed

vs. random), or any interaction (all ps > .2, uncorrected). Consequently,

the following analysis focused on the reaction time of correct trials.

As expected, this analysis on RT revealed a significant main effect of

the task phase (F1,20 = 8.475, p = .009) and a task phase by sequence

type interaction effect (F1,20 = 7.307, p = .014). Follow-up analyses

revealed that although participants responded equally fast to words

from the random and fixed sequences before learning (t20 = �1.358,

p = .190), the RTs for words from the fixed sequences were signifi-

cantly shorter than that from the random sequences in the post-

learning phase (Figure 2a, t20 = 2.264, p = .035).

To test our second hypothesis regarding the modality effect,

we grouped these words into four conditions according to the

modality of the current word and the proceeding word (i.e., 1 posi-

tion apart): vV, vA, aA, aV, where the first lowercase letter indicates

the modality of the proceeding word (predicting modality) and the

second uppercase letter indicates the modality of the current word

(predicted modality) whose RT were analyzed. For example, in the

V-V-A-A-V sequence, the word on position 2 was assigned to vV

condition, and the words on positions 3, 4, and 5 were assigned to

vA, aA, and aV condition, respectively. We then calculated the RT

differences between the target words in the fixed sequences and

that in the random sequences, before and after learning: RT

difference= (RTpost_random� RTpost_fixed)� (RTpre_random� RTpre_fixed),

with greater differences indicating a greater predictive effect for

fixed sequences than for random sequences as a result of learning.

Using the RT differences as dependent variable, a predicting modal-

ity (visual vs. auditory) by modality shift (within- vs. cross-modal)

ANOVA revealed a significant main effect of predicting modality

(F1,20 = 20.175, p < .001), and a significant interaction between pre-

dicting modality and modality shift (F1,20 = 4.69, p = .043), but no

significant main effect of modality shift (F1,20 = 0.01, p = .921).

Follow-up analysis found an asymmetric cross-modal predictive

effect, as indicated by greater predictive effect for the vA condition

than aV condition (t20 = 4.262, p < .001) (Figure 2b). No significant

F IGURE 2 Behavioral performance. (a) The mean RT for the semantic judgment task is a function of task phase and sequence type. (b) The
RT differences as a function of predicting modality (modality of the preceding item, indicated by the first lowercase letter) and predicted modality
(modality of the current item, indicated by the second uppercase letter). A(a) and V(v) indicated auditory and visual modality, respectively. The RT
differences were calculated using the following formula: RT difference = (RTpost_random � RTpost_fixed) � (RTpre_random � RTpre_fixed), with greater

RT differences indicating a higher predicting effect as a result of sequence learning. (c) The RT differences in the additional behavioral experiment
(Exp 2, 4 s ISI condition). (d) The RT differences after pooling the data from the fMRI experiment and the Exp 2 (4 s ISI condition). (e) The RT
differences between 0.5 s and 4 s ISI conditions in Exp 2. Each dot represents one subject, and the bars represent the group means. Error bars
indicate within-subject errors. *p < .05, **p < .01, ***p < .001.
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difference was observed between the two within-modal conditions

(vV vs. aA) (t20 = 0.179, p = .860), or between aV and aA conditions

(t20 = �1.550, p = .137), or between vA and vV conditions

(t20 = 1.589, p = .128).

To examine whether this asymmetric cross-modal predictive

effect was caused by the long inter-stimulus-interval (ISI, 4 s)

employed by the fMRI design, we did an additional behavioral experi-

ment (Exp 2) on 37 participants. The whole procedure was identical

to the fMRI experiment except a short ISI condition (0.5 s with no ori-

entation task) was also included for the semantic judgment task. The

order of the two ISI conditions (4 s vs. 0.5 s) was counterbalanced

across participants. An ISI conditions (4 s vs. 0.5 s) by predicting

modality (visual vs. auditory) by modality shift (within vs. cross-

modal) three-way ANOVA was conducted on the RT difference to

examine the effect of ISI on the predictive effect. Results showed a

significant main effect of ISI conditions (F1,36 = 8.83, p = .005) and

significant predicting modality by modality shift interaction

(F1,36 = 16.31, p < .001), but no other significant main or two-way or

three-way interaction effects (all ps > .128). These results replicated

the asymmetric cross-modal predictive effect in both the 4 s (interac-

tion effect: F1,36 = 11.426, p = .002; vA > aV: t36 = 4.038, p < .001)

and 0.5 s conditions (interaction effect: F1,36 = 6.574, p = .015;

vA > aV: t36 = 2.244, p = .031) (Figure 2c, Table S2). Since we did

not find significant interaction between the fMRI study and behav-

ioral study (4 s condition) (F1,56 = 0.14, p = .712), we pooled together

the data from the both experiments. We found strong asymmetric

cross-modal prediction effect (interaction effect: F1,57 = 15.409,

p < .001; vA > aV: t57 = 5.790, p < .001) (Figure 2d). We also found

that longer ISI reduced the overall predictive effect (F1,36 = 6.506,

p = .015), but there was no interaction effect between ISI and the

asymmetric cross-modal predictive effect (F1,36 = 0.10, p = .755)

(Figure 2e).

One possible reason for the asymmetric cross-modal prediction is

that the response to visual words was faster than auditory words

(763 ms vs. 1001 ms, t20 = 22.266, p < .001), so that there was less

room for improvement for the visual words. To account for this effect,

we calculated the z score of RT difference using the following for-

mula: zRT difference = ([RTpre_fixed � RTpre_random_mean]/

RTpre_random_std) � ([RTpost_fixed � RTpost_random_mean]/RTpost_random_std).

Our results still revealed a significant asymmetric predictive effect for

the fMRI study (interaction effect: F1,20 = 4.36, p = .05; vA > aV:

t20 = 2.658, p = .015) and the behavioral study (4 s condition: interac-

tion effect: F1,36 = 4.46, p = .042; vA > aV: t36 = 3.200, p = .003;

0.5 s condition: interaction effect: F1,36 = 4.84, p = .034; vA > aV:

t36 = 2.495, p = .017). This effect was still significant when data from

both studies were pooled together (interaction effect: F1,57 = 8.87,

p = .004; vA > aV: t57 = 4.183, p < .001). Overall, the effect size

(Cohen's d) was decreased after normalizing the RT difference (raw

RT difference vs zRT difference: 0.93 vs. 0.58 in the fMRI study; 0.66

vs. 0.53 [4 s condition] and 0.37 vs. 0.41 [0.5 s condition] in the

behavioral study; 0.75 vs. 0.55 when the results from both the fMRI

and behavioral study [4 s condition] were pooled).

3.2 | Multiple frontoparietal regions were involved
in sequence prediction

After demonstrating the overall predictive effect as a result of

sequence learning, we then turned to examine its underlying neural

basis. To reveal the brain regions involved in the predictive effect and

the modality effect, we did a three-way ANOVA on the words from

positions 2–5 in a sequence, including the predicted modality (visual

vs. auditory), modality shift (within- vs. cross-modal) and sequence

type (fixed vs. random). This analysis revealed no significant two-way

or three-way interaction effects, but significant main effects of

sequence type and of predicted modality. In particular, we found

greater activation for visual words than auditory words in the left ven-

tral visual cortex (VVC, MNI coordinates: x = �46, y = �72, z = �16,

Z = 5.95) and right VVC (MNI coordinates: x = 46, y = �70, z = �18,

Z = 5.65) (Figure 3a). In contrast, there was greater activation for

auditory words than visual words in the bilateral superior temporal

gyrus (STG, left: MNI coordinates: x = �52, y = �16, z = 5, Z = 7.02;

right: MNI coordinates: x = 58, y = �14, z = 0, Z = 6.69), left supple-

mentary motor area (MNI coordinates: x = �4, y = 8, z = 55,

Z = 4.71), and left precuneus (MNI coordinates: x = �8, y = �62,

z = 58, Z = 3.82) (Figure 3b). Similar activation patterns were

observed when we conducted a predicting modality, modality shift

and sequence type three-way ANOVA, focusing on words from

sequence positions 1–4 (Figure S3).

More importantly, frontoparietal regions were involved in cross-

modal prediction, showing greater activation for words from the fixed

sequences than for those from the random sequences. These regions

were superior parietal lobe (SPL, MNI coordinates: x = �32, y = �56,

z = 51, Z = 4.93), left middle frontal gyrus (MFG, MNI coordinates:

x = �34, y = 60, z = 12, Z = 4.86), and right precentral gyrus (MNI

coordinates: x = 50, y = 6, z = 35, Z = 4.77) (Figure 3c). Only medial

superior frontal gyrus (MNI coordinates: x = �10, y = 58, z = �4,

Z = 3.25) showed a reversed pattern (Figure 3d).

Given the significant asymmetric cross-modal predicting effect,

we directly compared the vA vs. aV conditions. Sequence type (fixed

vs. random) by condition (vA vs. aV) ANOVA revealed no significant

main effect or interaction.

In addition, given the differences in RT between trials, we did a

further univariate analysis which regressed out the trial-wise RTs in

the first-level models. This analysis revealed similar results (Figure S4,

Table S3), confirming the robustness of our findings.

3.3 | Predictive coding of item representations in
the fixed sequences

Having identified the involvement of unimodal and higher-order areas

in the sequence prediction, we further examined the predictive repre-

sentation in these regions. One possible mechanism underlying the

predictive effect (i.e., faster RT for items in the fixed sequences than

in random sequences) is the predictive activation of the next item in a
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sequence. If this were the case, we would predict greater pattern simi-

larity for adjacent items (i.e., lag 1 pairs) in fixed sequences than in

random sequences (Figure 4a). Furthermore, the effect would be mod-

ulated by the modality of predicting items due to the asymmetric

cross-modal predictive effect.

To test this hypothesis, RSA was used to calculate the pattern

similarity between adjacent items within a sequence but from differ-

ent runs. We grouped all lag 1 pairs into 4 conditions, that is, vV, aA,

vA, and aV, and then examined the predictive effect for each condi-

tion separately. Following previous studies and univariate results, we

focused our main analysis on the unimodal regions (i.e., VVC and STG)

and the higher-order association areas (i.e., MFG, IPL, and SPL).

We found that the higher-order areas showed a significant pre-

dictive effect for one or both cross-modal conditions, but not for the

within-modal conditions. In particular, MFG showed a significant pre-

dictive effect for the aV (t20 = 3.351, corrected p = .005) and vA con-

ditions (t20 = 2.323, corrected p = .046) (Figure 4b), and IPL showed

a significant predictive effect for the aV (t20 = 4.163, corrected

p = .001) condition (Figure 4c), whereas SPL showed significant pre-

dictive effect for the vA condition (t20 = 4.561, corrected p = .001)

(Figure 4d). No other predictive effect was significant in these regions

(all ps > .078, uncorrected). In contrast, the unimodal regions showed

significant within-modal predictions. In particular, the VVC showed a

significant predictive effect for the vV condition (t20 = 2.579, cor-

rected p = .036) (Figure 4e), whereas the STG showed a significant

predictive effect for aA condition (t20 = 2.546, corrected p = .038)

(Figure 4f). No other predictive effect was significant (all ps > .247,

uncorrected).

To directly compare the predictive effect between different

modalities, we conducted a predicting modality (visual vs. auditory) by

predicted modality (visual vs. auditory) ANOVA. This analysis revealed

a significant interaction between predicting modality and predicted

modality (F1,20 = 20.36, corrected p = .001) in SPL. No significant

main effect or interaction effect was found in the other regions (all

ps > .129, corrected). Follow-up analyses revealed that mirroring the

asymmetric cross-modal predictive effect in the behavioral data, SPL

exhibited a greater predicting effect for vA than aV pairs (t20 = 4.557,

p < .001) (Figure 4d). The correlational analysis further showed that a

greater neural predicting effect for the vA pairs was significantly cor-

related with the behavioral predicting effect in the vA condition

(r = 0.525, p = .015) (Figure 4g), suggesting that SPL plays an impor-

tant role in the visual-to-auditory prediction.

3.4 | Direct neural pathways supported within-
modal prediction

The above analyses revealed that the unimodal and higher-order areas

were respectively involved in the within-modal and cross-modal

sequence prediction. We then further examined the neural pathways

underlying successful within-modal and cross-modal sequence predic-

tions. Two possible neural pathways were examined: the direct path-

way, which involved the direct connectivity within and between the

unimodal regions, and the indirect pathway mediated by the higher-

order areas. We predicted that the within-modal predictions would be

supported by a direct pathway within modality-specific regions,

F IGURE 3 Whole-brain univariate activation analysis on predicted words (words on sequence positions 2–5). (a) Univariate results for
visual > auditory contrast. (b) Univariate results for auditory > visual contrast. (c) Univariate results for fixed > random contrast. (d) Univariate
results for random > fixed contrast. Images were thresholded using cluster detection statistics, with a height threshold of z > 2.3 and a cluster
probability of p < .05, corrected for multiple comparisons across the whole brain using Gaussian Random Field Theory.
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whereas the cross-modal predictions would be supported by an indi-

rect pathway mediated by higher-order areas (i.e., SPL). To test these

hypotheses, representational connectivity analysis was used to exam-

ine the neural pathways (Figure 5a, see Methods) separately for vV,

Aa, vA, and aV conditions.

To test the direct pathway, we examined the informative connec-

tivity of two consecutive words within the unimodal regions

(e.g., VVC-VVC for vV condition and VVC-STG for vA condition). Sup-

porting our hypothesis, we found significant direct connectivity within

the VVC for the vV condition (fixed vs. baseline: t20 = 2.570,

p = .018; fixed vs random: t20 = 2.197, p = .040) (Figure 5b), and

within the STG for the aA condition (fixed vs. baseline: t20 = 2.686,

p = .014; fixed vs random: t20 = 2.225, p = .038) (Figure 5c). How-

ever, no significant connectivity was found for aV or vA conditions (all

ps > .911, uncorrected) (Figure 5d,e). Confirming these dissociative

effects, the condition (vV vs. aA vs. vA vs. aV) by sequence type (fixed

vs. random) ANOVAs revealed a significant interaction effect for the

VVC–VVC connectivity (F3,60 = 3.271, p = .032), and the STG–STG

connectivity (F3,60 = 3.979, p = .012). Follow-up analyses found

stronger VVC–VVC connectivity for fixed than random sequence only

in the vV condition but not for the other three conditions (all

ps > .095, uncorrected). Similarly, stronger STG–STG connectivity was

observed for fixed than for random sequence in the aA condition but

not for the other three conditions (all ps > .101, uncorrected).

F IGURE 4 The neural predicting effect is a result of cross-modal sequence learning. (a) Schematic depiction of the pattern similarity
(PS) analysis, which was done between adjacent words (i.e., lag 1), separately for each of the four types of word pair, i.e., visual–Visual (vV),
auditory–Auditory (aA), visual–Auditory (vA), and auditory–Visual (aV) pairs, and for the fixed (left panel) and random sequence (right panel).
Please note that the two adjacent words were from different runs. (b–f) The neural predicting effect in the five pre-defined ROIs, separately for
each pair type. The PS difference was obtained by substrating the pattern similarity between pairs of adjacent words in the random sequences
from that in the fixed sequences, which was used to index the neural predicting effect. The SPL showed an asymmetric cross-modal predictive
effect, as indicated by a greater PS difference for the vA condition than the aV condition. Each dot represents one subject, and the bars represent
group means. Error bars indicate within-subject errors. G. Correlation between the neural predicting effect (PS difference) in the SPL and
behavioral predicting effect (RT difference) in the vA condition. *p < .05, **p < .01, ***p < .001.
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3.5 | Indirect neural pathway supported cross-
modal prediction

For the indirect pathway, we examined whether there was significant

informative connectivity between the predicting words (e.g., the visual

word in vA condition) in the SPL and that of the predicted words

(e.g., the auditory word in vA condition) in the STG for the vA condi-

tion. Again, informative connectivity was significant if the correlation

for the fixed sequence was greater than the baseline and also greater

than that for the random sequence. In addition, there should also be

significant informative connectivity between the VVC and the SPL for

the predicting words, and this connectivity should not differ between

fixed and random sequences.

Again supporting our hypothesis, we found a significant indirect

pathway from VVC to STG via SPL for the vA condition (Figure 6a). In

particular, there was significant informative connectivity between

VVC and SPL for the predicting words in both the fixed (t20 = 4.056,

corrected p = .002) and random sequence (t20 = 4.020, corrected

p = .001), and no significant difference between them was found

(t20 = 1.284, p = .428). Importantly, there was significant informative

connectivity between the predicting words in the SPL and the pre-

dicted words in the STG for the vA condition (fixed vs. baseline:

t20 = 2.910, corrected p = .027; fixed vs. random: t20 = 3.607, cor-

rected p = .006). A condition (vV vs. aA vs. vA vs. aV) by sequence

type (fixed vs. random) ANOVA on the SPL–STG connectivity

revealed a significant interaction effect (F2.42,48.34 = 5.10, p = .007),

and follow-up analysis found that this SPL–STG connectivity was spe-

cific to the vA condition, but not found in the other three conditions

(all ps > .098, uncorrected),

Consistent with the weak prediction from auditory to visual stim-

uli, we found the STG-SPL-VVC indirect pathway was not significant

(all ps > .05, uncorrected) (Figure 6b). Additionally, there was no signif-

icant indirect pathway for the unimodal conditions (i.e., VVC–SPL–

VVC and STG–SPL–STG for vV and aA, respectively) (Figure S5). Fur-

thermore, supporting the unique role of the SPL in the indirect path-

way, we found no significant indirect pathway through the MFG or IPL

for the cross-modal conditions (all ps > .108, uncorrected) (Figure S6)

or the within-modal conditions (all ps > .069, uncorrected) (Figure S7).

F IGURE 5 Representational connectivity analysis and direct neural pathways. (a) Schematic depiction of the representational connectivity
analysis. Take the vA condition as an example. We constructed an 8 � 8 representational similarity matrix (RSM) for the predicting words (V1 to
V8) and an 8 � 8 RSM for the predicted words (A1 to A8) in both the unimodal and higher-order areas. The information connectivity (Pearson
correlation) could be calculated within- or cross-regions and within- and cross-stages. Please note that the predicting words and the predicted
words were from different runs. (b) Direct connectivity within VVC underlies vV prediction. (c) Direct connectivity within STG underlies aA

prediction. (d) Direct connectivity between VVC and STG underlies vA prediction. (e) Direct connectivity between STG and VVC underlies aV
prediction. The y axis represents the Pearson correlation coefficients between the RSMs. The black horizontal line indicates the baseline (mean
shuffled similarity value). Each dot represents one subject, and the bars represent group means. Error bars indicate within-subject errors. *p < .05,
**p < .01, ***p < .001.
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Together, the connectivity results revealed dissociable neural

pathways for within-modal and cross-modal predictions and

highlighted the role of SPL in the indirect pathway supporting visual-

to-auditory prediction.

3.6 | The involvement of hippocampus in cross-
modal sequence prediction

To examine the contribution of the hippocampal subfields to the

cross-modal sequence prediction, we conducted the above analyses

in the CA1 and DGCA23 subregions (Figure 7). Only 20 participants

were included in those analyses as the T2-weighted high-resolution

image was missing for one subject. Univariate analysis revealed no sig-

nificant differences between the fixed and random sequences in any

hippocampal subregions. RSA of adjacent stimuli showed that left

CA1 exhibited a marginally significant predictive effect for the vV con-

dition (t19 = 2.238, uncorrected p = .0374) but not for the other three

conditions (all ps > .078, uncorrected) (Figure 7). No significant

predictive effect was found in the other three regions (all ps > .109,

uncorrected).

4 | DISCUSSION

The present study aimed to advance our understanding of cross-

modal sequence learning and prediction. Extant studies on within-

modal sequence prediction have shown that once participants have

learned an event sequence, they exhibit a faster response to items

that could be predicted by the preceding item than to those that could

not (Hsieh et al., 2014). Our results extended this finding to cross-

modal sequence prediction. Interestingly, the behavioral predicting

effect is comparable between within-modal and visual-to-auditory

cross-modal conditions.

In line with previous studies which have implicated higher-order

areas in cross-modal associations (Tanabe et al., 2005; Tibon

et al., 2019; Zhang et al., 2004), we found that multiple frontoparietal

regions, including SPL, SFG, and IFG, showed greater activation for

F IGURE 6 Indirect neural pathways underlying cross-modal predictions. (a) (Left): Schematic depiction of an indirect neural pathway via SPL
(red circle) connecting the unimodal regions under vA condition. (Middle): VVC–SPL connection for the predicting words in the vA condition.
(Right): The informative connection between SPL for the predicting words and STG for the predicted words in the vA condition. (b) (Left):
Schematic depiction of an indirect neural pathway via SPL (red circle) connecting the unimodal regions under aV condition. (Middle): STG–SPL
connection for the predicting words in the aV condition. (Right): The informative connection between SPL for the predicting words and VVC for
the predicted words in the aV condition. The y axis represents the Pearson correlation coefficients between the RSMs. The black horizontal line
indicates the baseline (mean shuffled similarity value). Each dot represents one subject, and the bars represent group means. Error bars indicate
within-subject errors. *p < .05, **p < .01, ***p < .001.
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items in the fixed sequences than that in the random sequences. This

could be explained by the anticipatory role of higher-order areas in

event prediction (Alexander & Brown, 2014; Brunec &

Momennejad, 2022; Lee et al., 2021). However, we failed to find

involvement of any hippocampus subfields in the cross-modal

sequence prediction, which is somewhat inconsistent with previous

studies which reported significant hippocampal involvement in unimo-

dal sequence prediction (Paz et al., 2010; Schapiro et al., 2012). One

factor that may contribute to this discrepancy is the experimental

materials. While images of objects (Reddy et al., 2015; Senoussi

et al., 2020) or movies (Lee et al., 2021; Paz et al., 2010) were used in

the previous studies, familiar words were used in the current study.

Existing studies have shown that the neural representation of words

is more likely to involve higher-order areas than pictures (Devereux

et al., 2013; Liuzzi et al., 2021; Vandenberghe et al., 1996).

Our results further suggest within- and cross-modal sequence

predictions may involve distinct cognitive and neural mechanisms.

First, we found that within-modal sequence prediction elicited preac-

tivation of the next item in the modality-specific regions, in line with

the previous study, which found predictive representations in the

visual (Ekman et al., 2017; Kok et al., 2013, 2017) and auditory cortex

(Demarchi et al., 2019) during unimodal association. In contrast, cross-

modal sequence prediction exhibited a similar predictive activation

pattern in the higher-order areas. This may be related to the informa-

tion coding nature of higher-order areas, which support modality-

independent representations of cross-modal stimuli (Handjaras

et al., 2017; Jung et al., 2018). Thus, our findings suggest the predic-

tive mechanism of cross-modal prediction activates the abstract-level

information representation in the higher-order areas.

Moreover, connectivity analysis revealed dissociable neural path-

ways for within-modal and cross-modal predictions. The within-modal

prediction was supported by direct pathways within the unimodal

regions. This suggests that one possible mechanism for within-modal

prediction is that the sensory cortices could develop a direct

association at the sensory level between adjacent items with repeated

training, as proposed by the chaining model (Davachi &

DuBrow, 2015; Lashley, 1951). This chaining mechanism could sup-

port the binding of elements (e.g., letters of a word and notes of

music) to form holistic representations, which is commonly observed

in both the visual and auditory cortices (Andrews et al., 2010; Fitch &

Martins, 2014; Schiltz & Rossion, 2006; Wong & Gauthier, 2010).

In contrast, the cross-modal prediction is supported by an indirect

pathway mediated by a higher-order area, that is, the SPL. The SPL is

located at the dorsal portion of the posterior parietal cortex and

receives input from sensory cortices. Anatomical and resting-state

fMRI studies have found that the SPL has fiber connections and func-

tional connectivity with the visual and auditory cortex (Lin

et al., 2021; Makris et al., 2005, 2013; Wang et al., 2015). Previous

studies have implicated the SPL in the visual–spatial attention shift

(Ciaramelli et al., 2008; Corbetta & Shulman, 2002; Hutchinson

et al., 2009). Several studies consistently found SPL activation when

the attention was shifted between two sensory modalities (Renier

et al., 2009; Shomstein & Yantis, 2004), suggesting a general role of

attentional shift.

In addition, the SPL is also involved in memory processes, particu-

larly in cross-modal conditions. First, the involvement of SPL in cross-

modal integration has been extensively demonstrated (Molholm

et al., 2006; Nakashita et al., 2008; Williams et al., 2015). Second, it

shows stronger activation in the cross-modal working memory

retrieval (Zhang et al., 2014) and cross-modal temporal order memory

(Zhang et al., 2004) than in the unimodal conditions. Third, the SPL is

engaged in retrieving spatial (“where”) information (Kwok et al., 2012;

Kwok & Macaluso, 2015). Finally, the SPL is also involved in the top-

down prediction process (Balser et al., 2014; Liu et al., 2010; Mayer

et al., 2015). For example, expectations about the identity of letters

elicited increased power of pre-stimulus alpha oscillations in the SPL

(Mayer et al., 2015), and the experts showed greater SPL activation

than novices during the motion anticipation task (Balser et al., 2014).

F IGURE 7 The role of hippocampal subfields in cross-modal sequence prediction. (a) A representative image of hippocampal subfields from
one subject, including CA1 (red) and DGCA23 (purple), which are overlaid onto the subject's T2 image. (b) The predictive representation effect
was examined in the subregions of the Hippocampus, separately for each pair type (i.e., vV, aA, vA, aV). The result showed there was a neural
predicting effect on vV condition in the left CA1. Each dot represents one subject, and the bars represent group means. Error bars indicate
within-subject errors. *p < .05, **p < .01, ***p < .001.
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These functions might underlie the important role of SPL in cross-

modal prediction. An existing study has also found that the multisen-

sory integration in the SPL could be accounted for by both the feed-

forward and feedback connections (Moran et al., 2008). The feedback

connections from higher-order areas to primary sensory cortices were

related to the top-down prediction process within the framework of

predictive coding (Bar, 2007; Bastos et al., 2012; Clark, 2013;

Friston, 2010).

Intriguingly, the current study found a novel asymmetric cross-

modal predictive effect, with a stronger visual to auditory prediction

than vice versa. This effect was not specific to our fMRI design, as it

was found under both long and short ISI conditions. Since the predic-

tive effect was calculated as the RT differences between the target

words in the fixed sequences and that in the random sequences

before and after learning, this asymmetry predicting effect should be

not be contributed to the RT difference in predicting or predicted

modality. It should be noted that we found that the overall predictive

effect was reduced in the 4 s condition than in the 0.5 s condition,

likely due to the fMRI environment, the longer ISI, and the visual judg-

ment task during the long ISI. Nevertheless, we did not find significant

ISI by predicting modality by modality shift three-way interaction in

the behavioral study, suggesting a similarly asymmetric effect in both

ISI conditions and the robustness of our results.

Several factors might have contributed to the asymmetric cross-

modal predictive effect. First, existing studies have implicated the role

of phonology in semantic access during Chinese word reading

(Perfetti & Tan, 1998; Spinks et al., 2000). The phonological information

activates rapidly and automatically (Tan & Perfetti, 1999) and precedes

the direct access of meaning from orthography (Braun et al., 2015;

Frost, 1998). This compulsory activation of phonological information

might facilitate the prediction of the next auditory word. However,

since the processing of semantic words and simple stimuli involves dif-

ferent cognitive neural mechanisms, future studies could manipulate

the materials (words vs. simple lights/textures and tones) and task

(semantic vs. non-semantic) to examine this hypothesis further.

Second, compared to the auditory system, the visual system is a

more dominant sensory system (Spence et al., 2012) and response

time to visual targets is usually faster than auditory targets under mul-

tisensory situations (Egeth & Sager, 1977; Koppen & Spence, 2007).

Consistently, we found that the RT for visual words (�760 ms) was

much faster than that for auditory words (�1000 ms). This could have

two effects that contribute to the asymmetric cross-modal prediction.

On the one hand, the processing of visual items is easier than auditory

items, allowing more cognitive resources to be assigned to predict and

process the following items. On the other hand, there is less room for

improvement and thus less predicting effect for the visual words.

Consistent with this notion, after accounting for the RT differences,

the asymmetric effect was reduced. Notably, since the first effect

benefits the VV condition and the second benefits the AA condition,

there was a comparable predicting effect for VV and AA conditions.

Finally, previous studies have posited that the visual system is an

active sensing system for seeking and acquiring information (Schroeder

et al., 2010), whereas the auditory system is a passive system that

mainly reacts to input (Golumbic et al., 2012). For example, visual lead-

ing context (e.g., lip movement) may prompt participants to simulate

the corresponding sounds actively, but listening to auditory leading

context does not prompt active engagement to the same degree

(Sánchez-García et al., 2011). Consequently, the leading auditory infor-

mation may serve as a general alerting mechanism, whereas the leading

visual information can generate specific predictions and thus facilitate

cross-modal predictions (Thorne & Debener, 2014). Nevertheless, audi-

tory information could direct visual attention in space in some ecologi-

cal conditions (e.g., a crash sound predicting a car accident). Future

studies should examine how the information coded in different modali-

ties could affect cross-modal predictions.

In contrast to the evidence for a pathway supporting visual-to-

auditory prediction, our study failed to reveal a neural pathway from

the auditory to the visual cortex. It should be noted that although we

did not find significant auditory-to-visual prediction in the 4 s ISI con-

dition, significant (although weaker) auditory-to-visual prediction was

found in the 0.5 s ISI condition. Perhaps the indirect pathway medi-

ated by higher-order areas can support behavioral facilitation under

the long ISI condition, whereas other mechanisms, such as item-

context binding, might support prediction under the short ISI condi-

tion (Davachi & DuBrow, 2015; Howard & Kahana, 2002). Future EEG

or MEG studies could test this hypothesis by examining how the

item-context binding and the indirect neural pathway contribute to

cross-modal prediction under different ISI conditions.

To summarize, the current study found a novel and robust pattern

of asymmetric cross-modal sequence prediction and further revealed

distinct neural mechanisms underlying within- and cross-modal

sequence predictions. These results emphasize the role of the SPL in

supporting an indirect pathway for visual-to-auditory cross-modal pre-

diction. Future studies are required to examine cross-modal prediction

under different conditions, which will have significant implications for

our understanding of psychiatric diseases with impairments in cross-

modal prediction, such as autism (Stevenson et al., 2014), schizophre-

nia (Stekelenburg et al., 2013), or dyslexia (Blau et al., 2009).
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