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A B S T R A C T   

Although memory has long been recognized as a generative process, neural research of memory in recent decades 
has been predominantly influenced by Tulving’s “mental time traveling” perspective and focused on the reac-
tivation and consolidation of encoded memory representations. With the development of multiple powerful 
analytical approaches to characterize the contents and formats of neural representations, recent studies are able 
to provide detailed examinations of the representations at various processing stages and have provided exciting 
new insights into the transformative nature of episodic memory. These studies have revealed the rapid, sub-
stantial, and continuous transformation of memory representation during the encoding, maintenance, consoli-
dation, and retrieval of both single and multiple events, as well as event sequences. These transformations are 
characterized by the abstraction, integration, differentiation, and reorganization of memory representations, 
enabling the long-term retention and generalization of memory. These studies mark a significant shift in 
perspective from remembering to reconstruction, which might better reveal the nature of memory and its roles in 
supporting more effective learning, adaptive decision-making, and creative problem solving.   

1. Introduction 

Memory, by definition, is the mental faculty that encodes, stores and 
retrieves information. The scientific research of memory has shifted in 
drastically divergent directions since its inception. Ebbinghaus, who 
deliberately used novel nonsense syllables to avoid the influence of 
existing long-term knowledge, documented our incredible ability to 
form precise memories in our brain and the law of forgetting (Ebbing-
haus, 2013). Later, Tulving emphasized that “[episodic memory] makes 
possible mental time travel through subjective time, from the present to the 
past, thus allowing one to re-experience, through autonoetic awareness, one’s 
own previous experiences” (Tulving, 2002). Other psychologists, however, 
took a different perspective to emphasize the imprecise, unreliable, 
malleable, and constructive nature of human memory. As Bartlett noted, 
“Remembering is not the re-excitation of innumerable fixed, lifeless and 
fragmentary traces, but rather an imaginative reconstruction or construction” 
(Bartlett, 1932). Subsequent studies by Schacter (Schacter, 1999) and 
Loftus (Loftus, 2005) revealed that our long-term memories are not 
faithfully reproduced but instead are distorted, leading to false memory. 

The theoretical development of memory transformation is signifi-
cantly advanced in reevaluating memory consolidation theory. Several 

alternative theories have been developed to address the limitations of 
standard consolidation theory (SCT) by emphasizing the never-ending 
and transformative nature of memory traces (Dudai et al., 2015; Mos-
covitch and Gilboa, 2021). More recently, researchers have expressed 
increasing enthusiasm to examine the neural representations underlying 
episodic memory (Xue, 2018). Using more sophisticated analytical ap-
proaches, recent studies have made significant strides in characterizing 
the representational formats in different brain regions, including 
low-level sensory, high-level conceptual and semantic, schematic, and 
contextual representations, as well as at various memory stages, 
including encoding, short-term memory maintenance, consolidation, 
and retrieval. When carefully comparing the representational contents 
and formats in different brain regions and memory stages, memory 
representations are clearly transformed within and across memory 
stages (Favila et al., 2020, 2018; Linde-Domingo et al., 2019; Wimmer 
et al., 2020; Xiao et al., 2017; Xue, 2018). 

These advances prompt a shift in our current perspective of episodic 
memory from “reinstatement” to “reconstruction”, which is character-
ized by the transformation of neural representations at various memory 
stages. Here, the term transformation specifically refers to the changes 
in representational formats and contents but not the overall change in 
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strengths, such as strengthening, weakening or forgetting. 
The present paper will review recent progress in this area. I will first 

provide a brief historical review of the development of memory 
consolidation theories, which shifted significantly from the strength-
ening to transformation of memories. Building upon these models, the 
current review will focus on human studies that have directly examined 
the neural representations of memory and the representational trans-
formation at different memory stages, including encoding, maintenance, 
consolidation and retrieval. I will start by describing recent methodo-
logical developments and the novel findings that characterize the 
multifaceted and distributed nature of memory representations. In the 
next three sections, I will focus on studies that characterize (1) the na-
ture of memory representations and their transformation across various 
memory stages for a single event, (2) the representational trans-
formation when multiple events are simultaneously activated, including 
memory updating, integration and differentiation, and (3) the trans-
formation for the memory of sequential events, such as compressed, 
reversed and reorganized replay. I will conclude by discussing future 
directions under the transformative framework of episodic memory. 

2. The transformation of memory consolidation theories 

Formal theoretical models addressing memory transformation have 
primarily focused on memory consolidation. The term consolidation was 
coined to describe the observation that associative memories become 
resistant to interference after a certain period of learning (Müller and 
Pilzecker, 1900). Meanwhile, studies of patients with brain damage 
revealed more memory impairments for recent events than for remote 
events (Burnham, 1903; Korsakoff, 1889; Ribot, 1882). In the 1950 s, a 
series of studies showed that damage to the medial temporal lobes, 
particularly the hippocampus, caused severe and lasting anterograde 
amnesia but preserved more remote memories. 

The classical standard consolidation theory (SCT) accounts for these 
findings by positing that the hippocampus plays an initial role in binding 
the content and context of an event into memory. During consolidation 
guided by the hippocampus, direct links among the memory compo-
nents stored in the neocortex are strengthened, and links between the 
hippocampus and the neocortex are weakened (Squire and Zola-Morgan, 
1991). As a result, consolidation involves a shift in the underlying neural 
substrates from the hippocampus to the neocortex, although researchers 
have not specified whether the nature of memory remains unchanged 
due to consolidation. 

The differences between the hippocampal and cortical memories 
were emphasized by the model of complementary learning systems 
(McClelland et al., 1995). It posits that the hippocampus and the neo-
cortices constitute a rapid and a slow learning system, respectively. The 
hippocampal system permits rapid learning of new items via synaptic 
changes. In contrast, the neocortex learns slowly to discover the struc-
ture in ensembles of experiences and gradually accommodates or as-
similates the hippocampal memories into structured knowledge. To 
explain the findings of rapid cortical consolidation (Tse et al., 2007), a 
recent simulation based on this model has found that when high reso-
nance exists between the new memory and existing knowledge, 
neocortical learning is activated and information is rapidly integrated 
into existing cortical knowledge networks (McClelland, 2013). 

Meanwhile, although the SCT adequately accounts for the antero-
grade amnesia resulting from hippocampal damage, it is not compatible 
with the findings that the hippocampus is reliably involved in retrieving 
remote episodic memory (Nadel and Moscovitch, 1997). The multiple 
trace theory (MTT) addresses this limitation and proposes that the 
hippocampus forms a separate memory trace each time an old memory 
is retrieved (Nadel et al., 2000). As a result, the hippocampus is always 
involved in the retention and retrieval of episodic memories, regardless 
of the age of the memory. Meanwhile, older memories will have more 
nonoverlapping memory traces stored in the hippocampus than recent 
memories and thus are more robust to hippocampal damage. The 

context binding model (CBT) proposes an alternative account of anter-
ograde amnesia in patients with hippocampal damage. Namely, the 
hippocampus is involved in binding items and context into episodic 
memory, and forgetting occurs due to contextual interference (Yonelinas 
et al., 2019). As recent memories share a greater overlapping context 
with new learning, they are more prone to interference and forgetting. 
Both models suggest that the hippocampus is involved in context-rich 
episodic memory, which is different than cortical memory. 

Recent developments highlight the transformation of memory traces 
during consolidation. For example, the competitive trace theory (CTT) 
proposes that many partially overlapping memory traces will be present 
as memories age. The hippocampus can reconstruct memory using 
overlapping traces during memory retrieval to avoid competition or 
confusion. The resulting memory will be decontextualized and become 
more semantic. Therefore, the consolidation of events involves the 
transformation from episodic memory to semantic memory, which is 
accompanied by shifts in neural correlates from the hippocampus to the 
neocortex (Yassa and Reagh, 2013). 

This idea that consolidation involves memory transformation is more 
systematically articulated in the recent trace transform theory (TTT). 
The TTT consists of several core principles. First, memory representa-
tions are multifaceted, including gist, semantics, schema, and episodes, 
each of which is supported by distinct neural substrates (Robin and 
Moscovitch, 2017; Sekeres et al., 2018). Second, following the principle 
of neural-psychological representation correspondence (NPRC)(Gilboa 
and Moscovitch, 2021), the TTT asserts that the shift in the neural 
substrates is also accompanied by the transformation of the psycholog-
ical characteristics of memory. Consequently, memories will continue to 
depend on the hippocampus for retention and retrieval as long as they 
remain detailed and context-specific, but those relying less on the hip-
pocampus as a result of consolidation would necessitate a trans-
formation in memory representation, e.g., from episodic to semantic and 
schematic representations (Moscovitch and Gilboa, 2021). 

In summary, the theoretical accounts of memory consolidation have 
been significantly transformed over the years. These developments 
emphasize that consolidation is dynamic, generative, and trans-
formative, resulting in the modification and reconstruction of 
experience-dependent internal representations. In addition to the 
transformation of memory representations, other researchers suggest 
memory consolidation is a never-ending process; the once fixed memory 
will become labile again when it is reactivated and thus is subject to 
subsequent changes (Dudai, 2012). 

Despite these theoretical developments, most supporting evidence 
for the TTT model is derived from the observed changes in expressed 
behaviors (such as the vividness, specificity, and generalization) and the 
shift in active brain regions (Moscovitch and Gilboa, 2021). Without 
directly examining the formats and contents of neural representations, 
the transformation of neural representation is largely inferred rather 
than observed. As will be discussed in detail below, several limitations to 
this inference have been noted. First, the definitions of the representa-
tions are primarily psychological and conceptual, which must be refined 
using neural data. Second, the map between the neural representations 
and behavioral performances might be complex and is modulated by 
many factors. Third, direct characterization of the neural representa-
tions and their changes in different brain regions might provide addi-
tional insights into the mechanisms of memory transformation. The last 
few years have witnessed the significant development of novel analyt-
ical methods to characterize memory representations and address these 
issues. In the next section, I will describe how these methods are used to 
advance our understanding of the nature of memory representations in 
distributed brain regions. 

3. The multifaceted and distributed neural representations of 
memory 

One primary goal and a major challenge in memory research is to 
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define and characterize memory representations. Psychological defini-
tions of memory representations draw distinctions in terms of the con-
tent, precision, and subjective feelings. For example, researchers have 
distinguished between familiarity and recollection (Mandler, 1980), 
implicit and explicit memory (Jacoby, 1991), and verbatim and gist 
memory (Reyna and Brainerd, 1995). The implicit vs. explicit and fa-
miliarity vs. recollection distinctions refer to subjective feelings and the 
level of consciousness. In contrast, the gist/verbatim representation re-
fers to the content and precision of memories. In particular, verbatim 
memory refers to memory of exact perceptual details, whereas gist 
memory refers to imprecise, “skeletal” or “generic” and essentially se-
mantic representations. The TTT model makes a further distinction be-
tween gist, schema, and semantics. In particular, the gist of the event is a 
summary of its central elements without the peripheral details, schemas 
refer to the shared features across a series of similar events, and se-
mantics refer to the conceptual aspect of an event (Moscovitch and 
Gilboa, 2021). 

Building upon these conceptual developments, recent studies have 
tried to provide more direct characterizations of memory representa-
tions in different brain regions. This analysis is facilitated by several 
recently developed methods to examine the content and formats of 
memory representation in distributed brain regions. One potent 

approach is to use various psychological and computational models to 
decompose the stimuli into specific features, such as different levels of 
perceptual representations, abstract and concrete semantic features, as 
well as time, place, and other episodic features (Fig. 1A). Meanwhile, we 
can characterize the neural representations using various features from 
neural data, such as single neuron spikes, multiunit response patterns, 
local field potentials, power and phase of the oscillations, regional 
activation patterns, and distributed connectivity patterns (Fig. 1B). 
Critically, using the representational similarity analysis framework 
(Kriegeskorte et al., 2008), we can link the neural representations with 
these model representations and infer the representational formats 
embodied in the brain activation pattern. Additionally, various decoding 
models (Fig. 1C) and inverted encoding models (IEM) (Fig. 1D) have 
been used to “read out” the specific information encoded in the brain. 
Using these novel approaches, we now have a deeper understanding of 
the nature of representations in different brain regions. 

3.1. Different levels of perceptual representations in the sensory cortex 

The majority of research on sensory representations is conducted in 
the visual domain. Based on accumulating evidence, the visual stimulus 
consists of a large number of visual features spanning many levels of 

Fig. 1. Characterization of the contents and formats of memory representations.A. Linking the neural representations with different models using representational 
similarity analysis (RSA). Left panel: This schematic illustrates stimulus features generated by deep neural networks (DNN) for visual images (top panel) and words 
(middle panel) and by psychological models of objects that involve human ratings (bottom panel). The DNN models convert stimuli into high-dimensional features 
that usually do not have interpretable meanings, whereas the features in psychological models are usually more directly interpretable. Right panel: This schematic 
illustrates the neural representations measured across different levels of brain organization, including single neuron spikes, multiunit responses, regional activation 
patterns, and global connectivity patterns. Middle panel: The RSA framework. The similarity matrix for the stimulus set (i.e., representational similarity matrix, RSM) 
is constructed separately for features generated by computational and psychological models and features of neuronal responses using various algorithms to char-
acterize the pairwise distances. The correspondence of the model and neural RSMs is then examined to infer the contents and formats of neural representations. B. 
Inverted encoding models used to read out the content of neural representations. In these models, the first step is to establish the mapping (weight matrix) between 
stimulus features and neural responses. Then, the content of unknown stimuli is reconstructed using its neural response pattern and the weight matrix. C. Decoding 
models used to read out the content of neural representations. Decoding models (i.e., classifiers) are first trained based on the neural responses and labels (e.g., visual 
category, semantic, and other features) of the training dataset, and this model is then used to determine the neural response to new stimuli and determine the 
probability of belonging to particular labels. 
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abstraction, from lower-level colors and orientations to middle-level 
shapes and textures and to high-level objects and actions (LeCun 
et al., 2015; Russ and Leopold, 2015; Zeiler and Fergus, 2014). Using the 
decoding approach on fMRI or EEG/MEG data, many studies have 
shown that information is reliably decoded in different regions along the 
ventral visual stream at different time points. However, knowing when 
and where discriminative information about visual objects occurs does 
not directly inform on the nature of these representations, such as 
whether they primarily reflect (low-level) visual features or (high-level) 
conceptual aspects of the objects (Clarke and Tyler, 2014). Other studies 
using inverted encoding models have successfully reconstructed the 
orientations (Ester et al., 2015) and faces (Cowen et al., 2014) from the 
activation patterns. However, these studies emphasize the similarity of 
the presented and reconstructed stimuli but did not examine their 
qualitative differences. 

To date, deep learning provides the most comprehensive computa-
tional models to encode and extract hierarchically organized features 
from natural pictures or videos (LeCun et al., 2015). Specifically, the 
superficial layers are associated with lower-level visual features, such as 
contrasts and blobs, and intermediate layers reflect the processing of 
surfaces, textures, and object parts. In contrast, deeper layers are asso-
ciated with increasingly complex features, such as objects and cate-
gories. By combining representational similarity analysis and deep 
neural network models, the different layers of DNN have been shown to 
be hierarchically correlated with neural activity along the visual stream 
(Cichy et al., 2016; Güçlü and Gerven, 2015; Kriegeskorte, 2015). 

These methods are now increasingly used to examine the content and 
format of sensory/perceptual representations during working memory 
maintenance and retrieval. Emerging findings show the distributed na-
ture of neural representations during working memory (Christophel 
et al., 2017; Dotson et al., 2018; Lee and Baker, 2016). For long-term 
memory, successful memory retrieval is accompanied by the reinstate-
ment of encoded representation in the sensory cortex (Ritchey et al., 
2013; Staresina et al., 2012; Tompary et al., 2016; Yaffe et al., 2014; 
Zhang et al., 2015). 

Despite similar representations during encoding, maintenance, and 
retrieval, very few studies have directly compared representations at 
different memory stages, which will inform us on whether representa-
tions are transformed. Even less studies have been performed to specify 
the nature of representations during maintenance and retrieval, which 
can be achieved using the same DNN models. I will return to this issue in 
the next section. 

3.2. The embodied and symbolic forms of semantic representation 

In addition to perceptual representation, another important form of 
representation is conceptual/semantic representations. A clear distinc-
tion between perceptual and conceptual/semantic representations is 
complicated. By definition, conceptual representations refer to features 
of an item that reflect its functions or value rather than its physical 
appearance (Noppeney and Price, 2004). For example, conceptual fea-
tures of an orange might be "a great source of vitamin C" and "grows in 
sunny places”, whereas "round shape" and "sweet taste" refer to sensory 
features. 

Binder and colleagues proposed 65 experiential features to represent 
semantics covering sensory, motor, spatial, temporal, causal, social, 
emotion, drive, and attention (Binder et al., 2016). These features, 
however, have not been systematically used to characterize semantic 
representations in episodic memory or to draw distinctions between 
semantic and perceptual representations. In practice, perceptual and 
semantic aspects are inferred based on whether one could recall the 
exact item and its perceptual details compared with its name or mean-
ing. Perceptual and semantic memories are also loosely inferred based 
on the involved brain regions. For example, the posterior sensory re-
gions are involved in perceptual memory, whereas the anterior regions 
are involved in semantic memory. 

Recently, several corpus-based models derived from natural lan-
guage processing (NLP) have been used to examine semantic represen-
tations. These models are based on the hypothesis that lexemes with 
similar linguistic contexts have similar meanings (Harris, 1954). The 
semantic representations are then achieved by counting the 
co-occurrences, e.g., latent semantic analysis (Landauer and Dumais, 
1997), or building prediction models, e.g., word2vec (Mikolov et al., 
2013), from a large corpus. Recent models, such as BERT (bidirectional 
encoder representations from transformers) (Devlin et al., 2018) and 
GPT-3 (generative pretrained transformer 3) (Brown et al., 2020), better 
characterize the word meaning in a particular context. 

Several issues should be noted when using corpus-based models to 
characterize semantic representations. First, unlike the feature models 
(Binder et al., 2016), 

these corpus-based models only examine the overall semantic simi-
larity but do not specify the semantic features. Second, using represen-
tational similarity analysis to associate neural representations and 
semantic representations, the corpus-based model contributes mainly to 
the decoding of sentences containing linguistically oriented “abstract” 
words. In contrast, the model based on experiential features improves 
the decoding of more concrete sentences (Anderson et al., 2019). Third, 
the corpus-based model nevertheless identifies some perceptual infor-
mation of the corresponding objects, as the semantic representation of 
words generated based on the word2vec model is strongly correlated 
with the visual similarity of the corresponding pictures based on Alexnet 
(Liu et al., 2020). These results are consistent with the dual form model 
of semantic representation based on sensory-deprived subjects (e.g., 
congenitally blind) (Striem-Amit et al., 2018; Wang et al., 2020), which 
proposes that semantics contains both sensory/motor experience and a 
non-sensory, language-derived representation (Bi, 2021). 

Together, existing studies have refined the definition of semantic 
representations and have provided useful models that might be readily 
used to examine semantic representations during episodic memory. 

3.3. Spatial and temporal context representation in the hippocampal- 
entorhinal system 

An emerging consensus in the memory field is that the hippocampus 
does not represent object information per se but is involved in binding 
events into the spatiotemporal context (Yonelinas et al., 2019). Any 
internally and/or externally generated and temporally adjacent events, 
as well as spatial, temporal, or other details, might be defined as context. 
In practice, the context mainly refers to the spatial and temporal infor-
mation surrounding the events. According to the temporal context or 
temporal drift model (Howard et al., 2005), the context refers to the 
randomly and slowly changing neuronal background activity present at 
the time of encoding and to which an episodic element is ’tagged.’ In 
addition to the one-shot, slowly and randomly drifting temporal context, 
a well-trained, highly predictable sequential context also exists. One 
example of the latter type of context is the CA1 “time cells”, which 
showed context-specific activities at unique time points of an experience 
when animals traveled along with well-trained spatiotemporal se-
quences (MacDonald et al., 2013). 

The hippocampal-entorhinal system carries representations of both 
types of spatiotemporal context. For example, a human fMRI study 
found that the spatial and temporal aspects of autobiographical expe-
riences are coded within the hippocampus across various scales of 
magnitude (Nielson et al., 2015). In addition, the hippocampal repre-
sentation can differentiate items with different temporal distances and is 
sensitive to event boundaries (Ezzyat and Davachi, 2014). Meanwhile, 
the hippocampus also carries sequential information about objects and 
differentiates the same object that appears in different sequential con-
texts (Hsieh et al., 2014). 

A recent study provided substantial evidence to support the role of 
the hippocampus in these aspects of context representations. In this 
study, participants were trained to use the method of loci (MOL) to 
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memorize word orders. The study yielded several relevant results. First, 
it showed temporal context reinstatement during retrieval in the hip-
pocampal CA1 area, with greater pattern similarity for item pairs stud-
ied at closer versus more distant temporal intervals. Second, the 
hippocampal representation was modulated by sequence boundaries, 
showing lower cross-boundary similarity than within-boundary simi-
larity. Third, the hippocampal representations were modulated by the 
sequential distance and spatial location of the loci (C. Liu et al., 2021; J. 
Liu et al., 2021; Y. Liu et al., 2021). 

3.4. Schema representation in the VMPFC and hippocampus 

The concept of schemas, developed by the British psychologist 
Frederic Bartlett, refers to the preexisting knowledge structures into 
which newly acquired information can be incorporated. In practice, a 
schema is broadly defined as an organized network of overlapping 
representations, including gist, concepts, categories, statistical regular-
ities, semantics, and other parameters (Gilboa and Marlatte, 2017; 
Preston and Eichenbaum, 2013). 

Several lines of evidence suggest that the VMPFC and hippocampus 
are involved in the acquisition and representation of schemas (Gilboa 
and Marlatte, 2017; Moscovitch and Gilboa, 2021; Preston and 
Eichenbaum, 2013; Xue, 2018). The VMPFC may support the detection 
of ‘resonance’ (Van Kesteren et al., 2012) or the ’goodness of fit’ be-
tween incoming information and this activated schema (Gilboa and 
Moscovitch, 2017; Hebscher and Gilboa, 2016; Moscovitch and Wino-
cur, 2002) and then biases the engagement of neocortical and hippo-
campal learning. In particular, although schema-inconsistent memory is 
encoded in the hippocampus, schema-consistent memory is encoded via 
VMPFC-hippocampal interactions (Brod et al., 2016; Tse et al., 2007; 
van Kesteren et al., 2010). Sensitivity to schema consistency was 
reduced in patients with VMPFC damage (Spalding et al., 2015). The 
authors of one human study trained subjects with paired associations 
over several months and reported a shift in the brain substrate from the 
hippocampus to the VMPFC. The encoding of novel information into the 
acquired knowledge was also supported by the VMPFC (Sommer, 2017). 

Given the complex nature of schemas, few studies have directly 
mapped the neural representation of schemas. Recently, Baldassano and 
colleagues presented subjects with stories conforming to two familiar 
but different scripts, i.e., eating at restaurants and going through the 
airport. They found that the VMPFC, together with the posterior medial 
cortex (PMC) and superior frontal gyrus (SFG), exhibited sequences of 
activity patterns that were specific to each of the two scripts but 
generalized across stories, modalities, and subjects. In addition, pre-
senting events in a scrambled order disrupted schematic effects on the 
MPFC (Baldassano et al., 2018). The strength of the schematic repre-
sentations during encoding potentially predicts subsequent recall 
(Masís-Obando et al., 2022). In another study, researchers designed 
three virtual cities that shared a common spatial layout with partially 
shared stores and found that the VMPFC represented an abstract spatial 
layout that was generalized across cities (Zheng et al., 2021). 

3.5. Cognitive map in the entorhinal cortex and medial prefrontal cortex 

Similar to schema, the cognitive map (Tolman, 1948) is also a sys-
tematic organization of knowledge that might facilitate new learning. 
Unlike schema, the cognitive map is characterized by its role in enabling 
the flexible generalization of knowledge to solve novel problems. For 
example, after becoming familiar with the environment, rats may form a 
cognitive map that allows them to take shortcuts to reach rewards 
(Tolman and Honzik, 1930) or find new routes when old ones are 
blocked (Tolman et al., 1946). Although the study of the cognitive map 
has traditionally focused on spatial navigation in rodents, emerging 
studies have been conducted in humans across various cognitive 
domains. 

Spatial navigation is primarily supported by “Place” cells in the 

hippocampus (O’keefe and Nadel, 1978) and “Grid” cells in the medial 
entorhinal cortex (Hafting et al., 2005). Human studies have shown that 
this grid modulation during navigation occurs in both the LEC and the 
VMPFC (Chen et al., 2021; Doeller et al., 2010; Jacobs et al., 2013; Kunz 
et al., 2015). Neurobiologically inspired computational models suggest 
that the grid representations in the EC might reflect basal functions for 
statistical transitions in two-dimensional (2D) topologies that can, in 
principle, enable animals and artificial agents to compose new routes 
and find shortcuts to reach goals in spatial environments (Banino et al., 
2018; Behrens et al., 2018; Whittington et al., 2020). 

The transfer of learning has also been examined in reward learning. 
When rodents are trained to discriminate a rewarding stimulus from an 
unrewarding stimulus, they exhibit increasingly better abilities to learn 
new discriminations (Harlow, 1949). This transfer requires an abstract 
representation of the structure of the task, abstract representations of 
the relationship between stimuli, contingency of the reward, and other 
processes, which is termed a cognitive map of the task space (Wilson 
et al., 2014). Human neuroimaging studies have found that the 
VMPFC/OFC represents a cognitive map of task space during rein-
forcement learning (Schuck et al., 2016), which is associated with task 
performance. 

In addition to spatial navigation and reward learning, the cognitive 
map has also been examined in other cognitive domains. For example, 
the grid-like hexagonally neural code has been observed in nonspatial 
stimulus dimensions, including the sound frequency (Aronov et al., 
2017), odor concentration (Bao et al., 2019), and artificial conceptual 
spaces (Constantinescu et al., 2016). According to a recent study, 
humans use a grid-like code in the entorhinal cortex and medial pre-
frontal cortex to infer direct trajectories between entities and guide 
discrete decisions (Park et al., 2021). 

In summary, significant progress has been achieved in understanding 
multifaceted and distributed memory representations in the brain, 
including hierarchical sensory representations, embodied and abstract 
semantic representations, spatiotemporal contextual representations, 
and structured knowledge representations (i.e., schema and cognitive 
maps) in various domains. These findings allow researchers to describe 
the content and format of memory representation in great detail, which 
have also operationalized (e.g., context and schema), enriched 
(verbatim), and clarified (e.g., semantic) some definitions of memory 
representations and call for a more precise definition of other terms (e. 
g., gist). 

4. Rapid and continuous transformation of memory 
representations 

Building upon these deep insights into the nature of neural repre-
sentations, an increasing number of studies have examined representa-
tions during different memory stages and in different brain regions, 
which helps elucidate the dynamic and transformative nature of mem-
ory representations. This section will review new findings on the 
representational transformation during encoding, short-term mainte-
nance, and retrieval by focusing on a single event (Fig. 2). 

4.1. Representational transformation during encoding 

As described above, perception includes a series of feedforward 
processing steps along a hierarchically organized neural pathway, dur-
ing which different forms of neural representations are formed in cor-
responding regions. Through feedback processing (Kietzmann et al., 
2019), the representations also change dynamically within single areas 
(Ghuman and Martin, 2019). For example, a nonhuman primate study 
showed that V1 neurons respond to visual orientation bars during early 
encoding but exhibit effects of contour integration 50–100 ms later that 
likely reflect feedback from V4 (Liang et al., 2017). Similar evidence has 
been obtained from an iEEG study showing that FFA first identifies 
face-specific information at ~50–75 ms after the onset of face images 
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and then forms invariant face identities at 200–500 ms, which might 
result from recurrent top-down and bottom-up interactions (Ghuman 
et al., 2014). 

Several studies have shown that this dynamic encoding processing 
varies systematically across subjects (Chadwick et al., 2016; Xiao et al., 
2020) and materials (C. Liu et al., 2021; J. Liu et al., 2021; Y. Liu et al., 
2021), which affects subsequent memory performance. For example, 
one human study revealed that the semantic representation in the 
temporal pole, the so-called semantic hub, correlated with the likelihood 
of false memory in an independent memory test (Chadwick et al., 2016). 
The within-subject neural-behavioral correlation was significantly more 
substantial than the between-subject correlation, suggesting that each 
subject had a partially unique semantic representation that influenced 
memory. According to a recent study, greater representational trans-
formations during encoding, which are characterized by the fast and 
prominent emergence of abstract semantic representations, are associ-
ated with better subsequent long-term memory performance (C. Liu 
et al., 2021; J. Liu et al., 2021; Y. Liu et al., 2021). 

These results provide neural representation evidence to support the 
hypothesis that effective memory encoding entails interactions between 
external inputs and preexisting knowledge (Gilboa and Marlatte, 2017; 
Moscovitch et al., 2016; Xue, 2018). This representational trans-
formation during encoding further suggests that existing knowledge 
facilitates memory encoding by assimilating the neural representations 
of incoming information. Consistently, schema-consistent pairs have 
been shown to involve additional semantic and associative-binding 
processes (Liu et al., 2016). Furthermore, existing knowledge might 
shape the neural representations of perceived features over time (Bein 
et al., 2020; Hasson et al., 2015). Interestingly, the items showing 
greater transformation from perceptual to semantic representation were 
also associated with greater item-specific representations, which medi-
ated the effect of representational transformation and subsequent 
memory (C. Liu et al., 2021; J. Liu et al., 2021; Y. Liu et al., 2021). Based 
on these results, the transformed neural representations might be more 
readily integrated into existing long-term knowledge and be stabilized 
via a fast, cortical consolidation mechanism. This hypothesis could be 
tested by examining the microstructural plasticity in the cortical regions 
using diffusion-weighted magnetic resonance imaging and functional 
tests of brain activity (Brodt et al., 2018). 

4.2. Transformation during short-term memory maintenance 

According to the sensory recruitment hypothesis of visual short-term 
memory (VSTM), the same brain regions engaged in sensory processing 
are also active during WM maintenance (Scimeca et al., 2018). Consis-
tently, many studies have shown that simple visual features are decoded 
or reconstructed during working memory maintenance (Oh et al., 2019; 
Yu and Shim, 2017). Recent studies, however, have revealed significant 
transformations during short-term maintenance in both brain regions 
and representational formats, which challenge the strict sensory 
recruitment hypothesis. 

Regarding brain regions, recent studies emphasize the contributions 
of parietal and prefrontal cortices to VSTM storage (Bettencourt and Xu, 
2016; Xu, 2017). These regions carry distinct neural representations, 
and their involvement depends on various factors, including the 
complexity of the stimulus, task requirements, and interference. For 
example, using a computational model to separate the guessing rate and 
precision of simple visual information maintained in working memory, 
several studies suggest that precision depends on the early visual cortex 
(Jia et al., 2021; Rademaker et al., 2019; Zhao et al., 2020). However, 
the sensory representation during working memory is abolished (Bet-
tencourt and Xu, 2016) or shows reduced fidelity (Lorenc et al., 2018; 
Rademaker et al., 2019) in the presence of a distractor. In contrast, the 
intraparietal sulcus (IPS) shows robust representations when predictable 
distractors are present (Bettencourt and Xu, 2016; Rademaker et al., 
2019). Although the IPS also showed a transient shift toward the 
orientation of the distractor after distraction presentation, the orienta-
tion was shifted back to the target orientation before the response 
(Hallenbeck et al., 2021; Lorenc et al., 2018). Perceptual training also 
enhances the parietal representation of the working memory content 
(Jia et al., 2021). Together, these results suggest that the parietal rep-
resentation might provide a robust representation to support short-term 
memory in the presence of distractions. 

Several studies have subsequently revealed differences in represen-
tational formats between encoding and maintenance. Using a visual 
DNN, a recent study showed that higher-order complex visual formats 
rather than early visual formats were shared between perception and 
visual imaginary (Xie et al., 2020). Similarly, using pictures rather than 
simple colors, orientations, or contrasts as stimuli, an iEEG study found 
that only high-level perceptual and abstract semantic information (i.e., 
after regressing out the visual representations from the semantic rep-
resentation) was maintained during working memory (Liu et al., 2020). 
Furthermore, target memory representations are protected in the pari-
etal cortex by storage in a different format from that used to represent 
sensory information in the presence of a distractor (Rademaker et al., 
2019). Corroborating these results, classifiers trained on perceptual data 
better classify perceptual than imagery data (Zeithamova et al., 2012), 
and an “imagery” classifier outperforms a “perceptual” classifier in 
classifying imagery data (Albers et al., 2013). 

Given these differences between encoded and maintained neural 
representations, a follow-up question is when does the transformation 
occur? Several studies have shown that working memory is a dynamic 
process that involves a substantial and continuous transformation (Fan 
et al., 2021; Stokes, 2015; Stokes et al., 2013). However, this dynamic 
processing might either reflect the encoding of information along the 
ventral visual stream (Cichy et al., 2014), the transformation of 
perceived stimuli into internal representations (Stokes et al., 2013), or 
the mapping of VSTM representations onto appropriate motor plans 
(Spiegel et al., 2013). A recent iEEG study used an extended mainte-
nance period (7 s) to separate these processes and revealed relatively 
stable neural representations in the maintenance period (Liu et al., 
2020), consistent with previous animal findings that after initial dy-
namic coding processes, task-relevant neural representations in VSTM 
may be retained in a relatively stable format (Stokes, 2015). Impor-
tantly, by carefully examining the changes in the representation across 
encoding and short-term memory maintenance, researchers found 

Fig. 2. Transformation of representations across memory stages. The incoming 
information flows through lower- to higher-order brain regions during encod-
ing, with more abstract information represented in the higher-order areas. 
Meanwhile, the higher-order regions interact with the lower-level regions to 
reshape the representations according to task requirements or assimilate them 
into preexisting knowledge representations. During maintenance, the repre-
sentations have been transformed in both representational formats and brain 
regions: from lower- to higher-level visual features in the first second of the 
post-encoding maintenance period, as reflected by the decay of the represen-
tational strength of lower-level features and an increase in the representational 
strength of higher-level features. After maintenance, the representational pat-
terns continue to transform during a consolidation stage that may occur during 
rest or sleep. During retrieval, the representations of stimuli become predom-
inantly semantic, and the representations of lower-level features become much 
weaker. (The intensity of the color and the changing patterns of the circles 
indicate representational strengths and transformations, respectively.). 
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substantial transforms in the first second of the maintenance period (Liu 
et al., 2020), suggesting a rapid transformation of the representations 
after stimulus offset. 

4.3. Transformation during post-encoding reactivation and retrieval 

For long-term memory, successful memory retrieval is accompanied 
by the reinstatement of neural representations during encoding (Estefan 
et al., 2019; Jafarpour et al., 2014; Polyn et al., 2005; Ritchey et al., 
2013; Staresina et al., 2012; Staudigl et al., 2015). Challenging the 
pattern reinstatement hypothesis of memory retrieval, recent studies 
have also provided strong evidence for the transformation of represen-
tations from encoding to retrieval. 

Convergent evidence has shown that late, abstract, and semantic 
representational formats support long-term memory. First, scalp-EEG 
studies suggest that the stability of representations across repetitions 
in late time windows (500 ms after stimulus onset) supports subsequent 
memory (Feng et al., 2019; Lu et al., 2015). Second, similar to short-term 
memory periods in which representations from a late encoding time 
window are maintained (Liu et al., 2020), representations from a late 
encoding phase (approximately 1000–2000 ms after stimulus onset) are 
reinstated during successful memory retrieval (Yaffe et al., 2014; Zhang 
et al., 2018), whereas greater encoding-retrieval similarity with 
stimulus-specific representations from an early processing period is 
observed for forgotten items (Zhang et al., 2018). Third, item-specific 
representations were detected in the visual cortex during encoding but 
in frontoparietal cortices during retrieval (Favila et al., 2018; Xiao et al., 
2017). Using a visual DNN model and a semantic model to examine the 
perceptual and semantic formats during retrieval, a recent iEEG study 
showed that memory retrieval involves strong abstract semantic repre-
sentations but lacks perceptual representations (C. Liu et al., 2021; J. Liu 
et al., 2021; Y. Liu et al., 2021). 

The transformation of neural representations from encoding to 
retrieval was further observed by directly comparing the nature of 
representations in the two memory stages. One fMRI study systemati-
cally examined pattern similarity during encoding, retrieval, and be-
tween encoding and retrieval (ERS) (Xiao et al., 2017). The authors 
proposed that if item-specific ERS is smaller than that during both 
encoding and retrieval, then the retrieved representations must be 
transformed rather than being weakened. Supporting this hypothesis, 
the authors observed significant item-specific representations during 
encoding in the visual cortex and item-specific representations during 
retrieval in the parietal lobe but no item-specific ERS in either region. 
This result was replicated in a later study (Favila et al., 2018). A recent 
iEEG study compared representations during encoding, maintenance, 
and retrieval and revealed significant item-specific encoding-mainte-
nance similarity and maintenance-retrieval similarity, but not 
item-specific ERS (J. Liu et al., 2021; Y. Liu et al., 2021; C. Liu et al., 
2021). Using a cross-subject representational analysis, the patterns 
observed in many higher-order cortical regions during recall are more 
similar between participants than between encoding and retrieval of the 
same participant, suggesting that the encoded memories are trans-
formed into shared representations (Chen et al., 2017). A subsequent 
study suggested that this transformation might be achieved by a 
stage-specific representational strength and cross-region reinstatement 
from encoding to retrieval (Xiao et al., 2020). These results together 
suggest a continuous transformation from encoding to maintenance to 
retrieval, resulting in different representations between encoding and 
retrieval. 

Transformations of perceptual to semantic representational formats 
might occur during the post-encoding consolidation (Dudai et al., 2015; 
Moscovitch et al., 2016). Reactivation during the postlearning rest 
(Tambini and Davachi, 2019) and sleep (Diekelmann and Born, 2010) 
periods has been systematically reviewed, focusing on how reactivation 
might strengthen memory traces. Interestingly, weaker memories are 
replayed more frequently during the subsequent rest period, and more 

replay predicted better subsequent memory for these items (Schapiro 
et al., 2018). One recent study documented that stimulus-specific ac-
tivity from a late encoding stage was reactivated during offline periods 
and sleep (Zhang et al., 2018). Notably, memory reactivation during 
wakefulness and sleep might result in different changes. While memory 
reactivation during sleep may lead to strengthening, reactivation during 
awake rest could exert a destabilizing effect (Diekelmann et al., 2011). 
More studies are needed to examine the representational formats during 
the post-encoding awake and sleep periods and how reactivation in 
these periods further transforms memory representations. 

Recent studies further suggest that retrieval is a constructive process 
that transforms memory representations. For example, the temporal 
order of these multifaceted representational formats was reversed from 
encoding to retrieval in several studies (Griffiths et al., 2019; 
Linde-Domingo et al., 2019; Mirjalili et al., 2021). Compared to repeated 
learning, repeated retrieval practice not only strengthens the target 
memory (Karpicke and Roediger, 2008) but also transforms memory 
representations, resulting in greater reliance on the frontoparietal re-
gion than on the visual cortex (Ye et al., 2020). As a result, the brain 
might rely less on sensory information for mnemonic decisions with 
retrieval practice. Another study found that retrieval practice increased 
both hit and false alarm (FA) rates to similar lures, which was predicted 
by the item-level and category-level reactivation during retrieval prac-
tice, respectively (Lee et al., 2019). A recent study reported a similar 
behavioral effect of retrieval practice on increasing both true and false 
memory, and these behavioral changes were associated with represen-
tational changes in the posterior parietal cortex and medial temporal 
lobe (Zhuang et al., 2022). These results provide neural accounts of the 
behavioral findings that retrieval practice does not improve the quality 
of sensory memory (Sutterer and Awh, 2016) and may even promote 
gist-based false memory (McDermott, 2006). 

Several possibilities might account for the discrepancies between 
item-specific encoding-retrieval similarities reported in earlier studies 
(Ritchey et al., 2013; Staresina et al., 2012) and the substantial trans-
formations observed in the studies described above. First, several pre-
vious studies either examined neural pattern reinstatement at the 
category level (Jafarpour et al., 2014; Polyn et al., 2005; Staresina et al., 
2012) or did not test item-specific representational reinstatement 
(Staudigl et al., 2015). These findings may thus reflect reinstatement at a 
relatively coarse categorical level rather than at a fine-grained item 
level. Second, several studies have tested long-term memory using 
recognition memory tests, in which item-specific pattern similarity may 
be introduced by shared perceptual inputs (Estefan et al., 2019; Ritchey 
et al., 2013). Finally, one study used a cued-recall task and found 
item-specific encoding-retrieval similarity (Yaffe et al., 2014). However, 
words were used as materials in this study, and neural reinstatement was 
observed in higher-order brain regions (e.g., hippocampus and anterior 
temporal lobe) where visually invariant semantic representations are 
encoded. Thus, reinstatement in this study may be based on semantic 
rather than stimulus-specific perceptual information. 

Taken together, accumulating evidence suggests rapid and substan-
tial memory transformations at various memory stages when the rich 
representations of a single event are examined and compared. This 
transformation from encoding to maintenance and retrieval is charac-
terized by a shift of neural regions from the early sensory cortex to 
higher-order sensory and semantic areas. The neural representations 
were substantially transformed within the same brain regions, likely due 
to an interaction between incoming novel information and existing long- 
term knowledge. Across encoding, maintenance, spontaneous reac-
tivation, and memory retrieval, the effect of long-term knowledge be-
comes increasingly stronger (Fig. 2). These interactions might facilitate 
the assimilation of novel information into existing knowledge and thus 
support the long-term retention and generation of memory. 
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5. Transformation during the study and reactivation of multiple 
events 

Learning usually involves the presentation of several events and the 
reactivation of partially overlapping events. Due to the interactive na-
ture of memory representations (Xue, 2018), the simultaneous activa-
tion of multiple memory representations will lead to representational 
and behavioral changes, such as integration and differentiation. With 
repeated exposure to partially overlapping events, the contextual in-
formation becomes less salient, semantic content can be extracted, and 
schemas can be formed (Fig. 3). 

5.1. Memory transformation via goal-directed updating 

Adaptive behaviors require the updating of memory in the changing 
environment, such that old memories are replaced with new memories 
(Fig. 3A). Existing studies in the reconsolidation literature suggest that 
reactivated memory might be updated by behavioral methods, including 
retrieval-extinction (Schiller et al., 2010), counterconditioning (Golt-
seker et al., 2017), and interference approaches (James et al., 2015). 
When subjects were asked to replace the old A-B memories with the new 
A-C memories, neural representational analyses revealed increased 
reactivation of new C memories and reduced reactivation of old B 
memories after memory updating (Kluen et al., 2019; Ye et al., 2020). 

This updating has been achieved by selectively strengthening 
(Jonker et al., 2018) or weakening (Wimber et al., 2015) coactivated 
memories, and the lateral prefrontal cortex (LPFC) may regulate reac-
tivated memories to support these goal-directed memory changes (Kluen 
et al., 2019; Kuhl et al., 2012). For example, intentional suppression of 
memory retrieval reduces hippocampal activity (Hulbert et al., 2016) 
and memory representations in the sensory cortex (Fellner et al., 2020; 
Meyer and Benoit, 2022) via control mechanisms mediated by the LPFC. 
For target memory, LPFC activation is positively correlated with 
cross-repetition representational similarity and subsequent memory 
performance (Xue et al., 2013; Zheng et al., 2018). Anodal stimulation of 
the LPFC enhances representational similarity and improves memory 
(Lu et al., 2015). 

In addition to selectively strengthening and weakening memory 
components, a recent study found that motivated forgetting also trans-
forms memory representations. Using intracranial EEG recordings from 
the lateral prefrontal cortex and temporal cortex, researchers found that 

memory traces of successfully remembered items show stronger 
encoding-retrieval similarity (ERS) in gamma frequency patterns. In 
contrast, the ERS of item-specific memory traces of actively forgotten 
items depends on the activity at alpha/beta frequencies. Interestingly, 
intentional forgetting relies more on top-down inhibitory connections 
than intentional remembering. This connectivity pattern and top-down 
information flow are also integrated into the memory traces of inten-
tionally forgotten items (Ten Oever et al., 2021). This study nicely shows 
how goal-directed processes potentially transform memory representa-
tions to support adaptive memory updating. 

5.2. Representational differentiation to reduce interference 

Beyond memory updating, a growing literature suggests that the 
brain may differentiate coactivated memories and hence increase 
memory flexibility in different contexts (Fig. 3B). In particular, the brain 
may transform its representations during short-term memory mainte-
nance to render the distractor less similar to the target. For example, a 
behavioral study showed that when the second interference served as a 
to-be-ignored distractor, the first target grating was shifted toward the 
distractor orientation (Rademaker et al., 2015). Using IEMs, Yu et al. 
(2020) found that the orientation and location representation of the 
distractor was rotated relative to the target in the visual cortex and IPS, 
respectively (Yu et al., 2020). In the 2-back memory task where the same 
item served as a distractor and target in different trials, the represen-
tational format of the orientation was remapped into a rotated repre-
sentation when it was unprioritized and then mapped back into its initial 
format when subsequently prioritized (Wan et al., 2020). These studies 
indicate flexible remapping based on priority, which increases the dis-
tance between prioritized and unprioritized items to protect the target 
representation. 

The conflict may be greater when the coactivated representations 
partially overlap. Existing studies have shown that the hippocampal DG 
area contains pattern separation mechanisms to orthogonalize similar 
inputs (Yassa and Stark, 2011). In addition to this widely accepted 
pattern separation mechanism revealed by MVPA (Lohnas et al., 2018), 
learning might also reduce the similarity of overlapping events. For 
example, one study directly compared the change in pattern similarity of 
related memories before and after learning, showing that reduced 
pattern similarity of related memories within the hippocampus as a 
result of interleaved retrieval and restudy correlated with 

Fig. 3. Memory updating, differentiation, 
integration, and schema formation. Circles 
represent either episode elements or schema 
units, and lines connecting the circles represent 
their associations. The thickness of the lines 
indicates the association strength. A. Memory 
updating. When old memories are reactivated 
and enter into a labile state, a new experience 
may change or update the reactivated mem-
ories, create associations with old memories, 
and disrupt old associations. B. Memory differ-
entiation. Overlapping events may be differen-
tiated to reduce interference via pattern 
separation and "repulsion", resulting in 
nonoverlapping memory representations. C. 
Memory integration. The overlapping element 
(the yellow circle) triggers the reactivation of 
memories of prior experiences (the blue circle). 
Old and new memories are then integrated to 
form an association among the three elements. 
D. Gist extraction and schema formation. When 
multiple events sharing similar elements are 
learned, the overlapping elements may be 
extracted as gist, and structured knowledge (i. 

e., a schema) is formed according to the relationships among the elements in memory space.   
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retrieval-induced facilitation of competing memories (Hulbert and 
Norman, 2015). 

Learning also triggers an additional "repulsion" among hippocampal 
representations, i.e., the similarity among overlapping events is lower 
than the similarity among nonoverlapping events. For example, these 
hippocampal representations of overlapping routes (Chanales et al., 
2017), overlapping item pairs (Favila et al., 2016), overlapping object 
sequences (Hsieh et al., 2014), or overlapping episodic contexts 
(Dimsdale-Zucker et al., 2018) become more distinct than nonoverlap-
ping pairs. Several studies reported a lower pattern similarity for 
spatially near than far items (Kunz et al., 2019; Kyle et al., 2015), and 
the CA2/3 and DG regions showed lower pattern similarity when both 
spatial and temporal information was correctly retrieved than when 
only spatial or temporal information was retrieved (Copara et al., 2014). 
Using a “method of loci” strategy to encode multiple items in the same 
loci, a recent study obtained clear evidence of representational "repul-
sion" for both spatial and sequential information. In particular, lower 
pattern similarity for items encoded in the exact location than in 
different locations was observed in the CA1 region during retrieval, and 
representations of more adjacent pairs were more distinct than repre-
sentations of more distant pairs in the CA2/3 and DG regions (J. Liu 
et al., 2021; Y. Liu et al., 2021; C. Liu et al., 2021). According to a recent 
study, the decorrelation of similar memory representations was 
temporally coupled with the behavioral expression of interference res-
olution (Wanjia et al., 2021), providing direct evidence that neural 
repulsion contributes to the resolution of episodic memory interference 
in humans. In summary, these results suggest that hippocampal repre-
sentations may be flexibly configured to reduce interference and 
improve the precision of episodic memory. 

5.3. Memory transformation as a result of reactivation-based integration 

Other studies have shown that old reactivated memories are inte-
grated into a new memory and context (Fig. 3C). An early behavioral 
study showed that when participants had been reminded of List 1 
(studied on Day 1) before studying List 2 (on Day 2), they showed more 
intrusions from List 2 items when recalling items from List 1 (Hupbach 
et al., 2007). This effect is time dependent, such that the cross-list 
intrusion does not occur immediately but only on Day 3. Notably, 
although these results are viewed as evidence for memory reconsolida-
tion, alternative accounts, such as reactivation-induced memory inte-
gration, have also been suggested (Gisquet-Verrier and Riccio, 2018). 
This integration account is also supported by the simulation based on the 
temporal context model (Sederberg et al., 2011). Integration might also 
occur when the new memories are semantically related to the old 
memories (Antony et al., 2022; C. Liu and G. Xue, 2022). 

Using representational similarity analysis, a series of studies using 
the AB-AC paradigm showed that old B memory is reactivated during 
later AC learning, which is directly related to behavioral performance 
that reflects memory integration (Schlichting et al., 2015). Another 
study using the AB-AC paradigm found that the MPFC represents inte-
grated memories, but only one week after AC learning (Tompary and 
Davachi, 2017). In a cleverly designed study, Collin and colleagues 
asked subjects to first study three seemingly unrelated events A, B, and C 
from a narrative. They then sequentially presented subjects with two 
linking events that allowed subjects to directly link A-B and B-C events. 
They found that the hippocampus represented the integrated narratives 
at different scales: the posterior hippocampus represented the most 
recently directly associated events, the middle hippocampus concur-
rently represented multiple directly associated events, and the anterior 
hippocampus represented the whole narrative, including the linked A-B 
and B-C events and the inferred A-C events (Collin et al., 2015). 

In these paradigms, the old memory is spontaneously reactivated 
during new learning. If we potentiate the reactivation of an old memory, 
then a more robust representational integration will occur. One study 
using the same AB-AC learning paradigm compared two types of AC 

learning, restudy and retrieval practice, to test this hypothesis. During 
retrieval practice, subjects must recall the newly learned AC memory 
instead of repeatedly studying AC memory (e.g., the restudy condition). 
Compared to repeated learning, retrieval practice resulted in greater 
reactivation of the old B memory and interestingly more integration 
(and differentiation) of old and new memories in the MPFC (Ye et al., 
2020). These results support the role of the MPFC in integrating and 
updating reactivated memory traces (Gilboa and Marlatte, 2017; 
Schlichting and Preston, 2015). Specifically, they are consistent with the 
hypothesis that retrieval practice will lead to the reactivation of related 
memory traces. The MPFC might develop integrated neocortical repre-
sentations of these memory traces resembling the characteristics of rapid 
system consolidation (Antony et al., 2017). 

5.4. Factors that affect the fate of reactivated, overlapping memories 

As described above, existing studies have revealed a mixed picture 
regarding the outcomes of reactivated, partially overlapping memories, 
including strengthening, weakening/erase, integration, and/or differ-
entiation. In addition to the goal-directed representational changes, 
these complex results might be attributed to several additional factors, 
including the strength of the old and new memories and their similarities 
(Antony et al., 2022; Liu and Ranganath, 2021). For example, strong and 
consolidated old memories are more likely to be differentiated from and 
integrated with new memories than to be replaced by new memories (Ye 
et al., 2020). The hippocampus discriminates events that share either 
item information (similar items) or context information (same contex-
tual cue) but generalizes across events when they share similar 
item-context associations (Libby et al., 2019). 

In addition, the degree of memory reactivation potentially affects its 
outcome. According to the nonmonotonic plasticity hypothesis (NMPH), 
the representational change (memory traces moving apart or together) is 
a U-shaped function of the coactivation (overlap) of these memories 
during learning. Low levels of coactivation between two memories lead 
to no change; high levels of coactivation will strengthen mutual con-
nections and lead to integration, whereas moderate levels of coac-
tivation will weaken mutual connections and lead to differentiation 
(Ritvo et al., 2019). One study used a novel neural network image 
synthesis procedure to create pairs of stimuli that varied in similarity in 
high-level visual regions and found that the representational change in 
DG was fitted to the NMPH curve (Wammes et al., 2021). 

Finally, the inferred cause (i.e., latent cause) of the new event might 
determine whether the old reactivated memory is replaced by the new 
event or a new memory is created. According to the latent cause model, 
memory is used to generate predictions. Consequently, the brain will 
attempt to infer the latent cause of a new event, and it will create a new 
memory if it implies a new possible cause for a surprising event (i.e., A-C 
memory); otherwise, it will update the existing old (A-B) memory 
(Gershman et al., 2017). 

5.5. Gist extraction and schema formation from many overlapping 
memories 

As memories age, many partially overlapping memory traces will be 
present. The Competitive Trace Theory (CTT) proposed that the hippo-
campus reconstructs memory using overlapping traces during memory 
retrieval to avoid competition or confusion (Yassa and Reagh, 2013). 
The resulting memory will be decontextualized and become more se-
mantic, accompanied by shifts in neural correlates from the hippocam-
pus to the neocortex. This idea is well captured by a formal 
computational model, SARKAE (i.e., Storing and Retrieving Knowledge 
and Events), in which knowledge (or semantic memory) is represented 
as an accumulation of the co-occurrence of features in episodic events 
(Nelson and Shiffrin, 2013). 

In addition to a single word, the co-occurrence of words in different 
contexts may determine their semantic similarity and the formation of a 
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semantic network (Harris, 1954) (also see Section 3.2). This process is 
nicely illustrated in the laboratory using statistical learning paradigms. 
For example, human subjects are able to learn the statistical regularity of 
a sequence, and the neural representation in the MTL is more similar for 
strong pairs (transition probability 1) than weak pairs (transition 
probability 1/3) and shuffled pairs (Schapiro et al., 2012). In a subse-
quent study, participants learned the community structure of stimuli 
based on the transition probability of the sequence and used them to 
guide the segmentation of the sequence. With learning, the neural rep-
resentations of stimuli with shared temporal associations became more 
similar to each other in regions such as the anterior temporal lobe, 
angular gyrus and inferior frontal gyrus (Schapiro et al., 2013). 

Recent studies have used a neural pattern similarity analysis to 
directly map the formation of schema and cognitive maps (Fig. 3D). For 
example, one human study asked subjects to learn the spatiotemporal 
trajectories in a large-scale virtual city. After learning, the neural simi-
larity in the hippocampus scaled with the remembered proximity of 
events in space and time (Deuker et al., 2016), and representations in the 
anterior-lateral entorhinal cortex (alEC) specifically reflected the tem-
poral event structure (Bellmund et al., 2019). Another study trained 
subjects to use the method of loci to remember the temporal order of 
words and found that the hippocampal CA1 and DG and CA2/3 regions 
represented the spatial and temporal information of the loci map, 
respectively (J. Liu et al., 2021; Y. Liu et al., 2021; C. Liu et al., 2021). 

Finally, the schemas and cognitive maps might be “inferred” based 
on discrete and partial experiences, which is analyzed in the lab using a 
cleverly designed paradigm (Park et al., 2020). On Day 1 and Day 2, 
subjects were asked to learn the within-group ranks of one of the two 
groups in each of the two dimensions, i.e., competence and popularity. 
On Day 3, subjects learned to link two groups based on feedback from 
between-group comparisons. Critically, this between-group comparison 
was limited to “hub individuals”, which created a sparse path to connect 
the two groups. Humans constructed a multidimensional cognitive map 
based on these sparse and discrete experiences. The representation 
similarity in the hippocampus, entorhinal cortex, and VMPFC is linearly 
related to the Euclidean distance between the people in the mentally 
reconstructed social hierarchy map. 

In summary, when old and new memories are coactivated, old 
memories can be replaced by new memories or integrated with or 
differentiated from new memories. The exact outcomes of the memory 
transformations depend on both goal-directed control processes and the 
properties of reactivated representations. These transformations in-
crease the adaptivity and predictivity of memories. Combining these 
dynamic transformation mechanisms and the unique coding schema in 
the hippocampal-entorhinal system and the MPFC, schemas could be 
formed from multiple overlapping memories, facilitating the acquisition 
and transfer of knowledge. 

6. Transformation during the replay of sequential events 

Our experiences are continuous and consist of sequences of events 
(Fig. 4A). Early recording studies in rodents revealed that with repeated 
learning in a running track, hippocampal place cells would repeat the 
same sequential pattern of activity during subsequent sleep (Skaggs and 
McNaughton, 1996; Wilson and McNaughton, 1994). This so-called 
“replay”, which is defined as the sequential reactivation of neuronal 
activities, is not limited to spatially tuned cells in rodents but also occurs 
for nonspatial events in humans (Liu et al., 2019; Schuck and Niv, 2019). 
Similar to the reactivation of nonsequential representations, cumulative 
studies have revealed several essential characteristics of replay that 
emphasize its transformative nature (Foster, 2017). 

6.1. Compressed and discontinuous replay 

A highly reliable observation in rodent is that the replay events (e.g., 
50–150 ms) are temporally compressed compared with active running 

events (e.g., several seconds) (Fig. 4B) (Lee and Wilson, 2002; Skaggs 
and McNaughton, 1996). Human magnetoencephalography studies 
have also shown that memory replay is characterized by a compressed 
reinstatement of temporal sequence patterns from encoding (Liu et al., 
2019; Wimmer et al., 2020). For example, by decoding individual 
episode elements, the authors found that successful retrieval was sup-
ported by the replay of consecutive episode elements, with a temporal 
compression factor of > 60 (Wimmer et al., 2020). 

In addition to temporal compression, emerging studies have revealed 
that replay may be discontinuous and flexible (Fig. 4C). In particular, 
humans can flexibly skip events during the replay of event sequences. 
For example, within-event transitions are more likely than across-event 
transitions in free recall (Heusser et al., 2018). In addition, the transition 
between subevents takes longer than the transition from one event to 
another (Michelmann et al., 2019). In a temporal order judgment task, 
the reaction time for cross-event pairs was faster than that for 
within-event pairs (Zuo et al., 2020). 

This compressed and discontinuous reactivation might be supported 
by event segmentation. The continuous experience is segmented at 
multiple timescales along the cortical processing hierarchy, showing a 
shift in activation patterns at the event boundary (Baldassano et al., 
2017). This segmentation might provide several advantages for memory 
consolidation and generalization. First, event segmentation theory 
proposes that ongoing experience clustered in this manner is adaptive, 
as it promotes efficient online processing, the organization of memory, 
and the later retrieval of information (Kurby and Zacks, 2008; Shin and 
DuBrow, 2021). Consequently, event segmentation ability is signifi-
cantly associated with memory ability (Sargent et al., 2013). 

Second, according to the inference-based framework, experiences 
are grouped according to what is inferred to have generated them (Shin 
and DuBrow, 2021). In this manner, existing knowledge is employed to 
organize the events, and the hippocampus is involved when the infer-
ence changes and an event boundary is created. Consistently, the hip-
pocampus shows increased activity at higher-order event boundaries 
(Baldassano et al., 2017; Ben-Yakov and Henson, 2018; Reagh et al., 
2020), accompanied by the rapid reinstatement of the just-encoded 

Fig. 4. Compressed, reversed, and reorganized replay of an event sequence. A. 
This schematic shows one example of a daily life experience. The black arrow 
represents the timeline. While the experience itself is continuous, it is 
segmented into a sequence of events (as indicated by the underlying icons) 
marked by different colors. B. Compressed replay. When replay occurs, the 
experienced events are likely to be replayed faster than the original experience, 
with a compression factor of up to 60 in some circumstances. C. Discontinuous 
replay. The replay of an event sequence at some time is discontinuous and 
flexible, showing varied compression factors for different events and even 
skipping certain events. D. Reversed replay. The replay may occur in the reverse 
direction due to reward or task requirements. E. Reorganized replay. The replay 
is reorganized according to an existing cognitive map to facilitate the speed and 
generalization of new learning. 
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events (Silva et al., 2019). The boundary-triggered hippocampal activ-
ities predict pattern reinstatement during later free recall (Baldassano 
et al., 2017) and behavioral performance in the memory test (Reagh 
et al., 2020). 

Third, several studies have shown that replay might serve a planning 
function (Behrens et al., 2018; Wise et al., 2021). This compressed 
replay might allow fast simulations of trajectories through the cognitive 
space (Arnold et al., 2016). Finally, compressed replay allows the cell 
pairs to co-fire within a time window conducive to inducing synaptic 
plasticity (Bi and Poo, 1998), leading to strengthened connections be-
tween the coactivated neurons (King et al., 1999). 

6.2. Reverse replay: the role of task requirement and reward 

Although on a similar temporally compressed timescale as in sleep, 
awake replay often occurs in the reverse order to the order in which the 
fields are arranged along the track (Foster and Wilson, 2006; Gupta 
et al., 2010). In humans, reverse replay has also been observed during 
short-term maintenance (Huang et al., 2018), postlearning rest (Liu 
et al., 2019), and long-term memory retrieval (Wimmer et al., 2020) 
(Fig. 4D). Unlike forward replay, reverse replay represents an abstrac-
tion from the original experience and a challenge to the original 
conception of replay as recapitulation. 

The direction of replay can be flexibly switched by the current goal, 
such that forward replay is observed when subjects are asked to retrieve 
memory components that follow a cued element. In contrast, reverse 
replay is observed when they are asked to retrieve memory components 
that precede a cued element (Wimmer et al., 2020). 

In addition to goal-directed modulation, researchers have posited 
that reverse replay might represent a mechanism for associating places 
with values (Behrens et al., 2018; Foster, 2017). In sequential decision 
problems such as navigation, planning by a forward search of possible 
action sequences is prohibitively inefficient due to the substantial 
combinatorial increase in the number of possible routes. An efficient 
solution is to start from the goal and move back along incoming tra-
jectories, which is always a single step (Foster, 2017). Supporting the 
hypothesis that reverse replay is designed to learn values from rewards, 
increasing or removing reward increases or decreases the rate of reverse 
replay, respectively, with no effect on the rate of forward replay 
(Ambrose et al., 2016). One human study also revealed that reward 
enhanced the reverse replay of event sequences (Liu et al., 2019). In a 
recent study, the same group provides direct evidence that reverse 
replay may support nonlocal, model-based learning, enabling inference 
from indirect experience (J. Liu et al., 2021; Y. Liu et al., 2021; C.Liu 
et al., 2021). 

6.3. Reorganized replay that supports inference and generalization 

In addition to compressed and reversed replay, replay might reor-
ganize prior experience (Fig. 4E). Early rodent studies have provided 
evidence for replaying never-before-experienced sequences (Gupta 
et al., 2010; Ólafsdóttir et al., 2015). Humans can use a cognitive map of 
the social hierarchy to infer direct trajectories between entities and 
guide discrete decisions (Park et al., 2021, 2020). This mechanism might 
enable generalization and support planning for a route for novel prob-
lems (Pfeiffer and Foster, 2013). 

In addition, the replay is potentially reorganized based on previously 
learned rules, allowing the generalization of rules to new sets of stimuli. 
For example, one study trained participants on a rule that defines the 
order of objects and then presented participants with a novel set of 
objects in a scrambled order. Participants were able to replay the novel 
objects in a new order defined by the rule (Liu et al., 2019). This reor-
ganized replay might involve “factorized” representations of object 
identities and positions (Fan et al., 2021; Hsieh et al., 2014; J. Liu et al., 
2021; Y. Liu et al., 2021; C. Liu et al., 2021). Consistently, the authors 
found that the replayed information contained both the abstract 

sequence position and the object identification (Liu et al., 2019). 
In summary, emerging evidence suggests that replay is not simply a 

recapitulation of prior experience but instead plays an essential role in 
memory consolidation, schema formation, and generalization. As a 
result of event segmentation, compressed and discontinuous replay 
plays a vital role in facilitating the organization and consolidation of 
memory. In contrast, reverse replay is essential in learning values from 
rewards, enabling value-based prediction and decision-making. Finally, 
reorganized replay might facilitate schema formation, supporting the 
generalization of knowledge to new situations. 

7. Conclusions and future directions 

Guided by Bartlett’s early conceptualization of memory trans-
formation and recent developments of memory consolidation theories, 
an increasing number of recent studies have carefully examined neural 
representations in distributed brain regions and at different memory 
stages. The available evidence emphasizes several vital features of 
episodic memory representations. First, episodic memory entails 
multifaceted and distributed representations and involves widespread 
neural networks. Second, memory is a dynamic and constructive process 
in almost every memory stage, including encoding, maintenance, 
retrieval, and consolidation. This process involves substantial repre-
sentational transformations characterized by a change in representa-
tional content and format and sometimes a shift in neural substrates. 
Third, transformation occurs when memory is in an active state. Old 
consolidated memories are more likely to be transformed when they are 
reactivated than when they are not. The fate of the active and reac-
tivated representations depends on the strength and similarity of the 
reactivated memory, their predictivity, and current goals. Fourth, 
memory transformation occurs via an interaction with other memory 
representations, including those from surrounding events and those 
reactivated from prior experience and long-term knowledge. Finally, 
these transformations play an adaptive role in facilitating memory 
acquisition, retention, predictivity, and generalization. 

The exciting novel results reviewed here clearly support a trans-
formative perspective of memory representations and will continue to 
promote a shift in the paradigm in future research. Namely, apart from 
examining the pattern reinstatement or replay at different memory 
stages, an examination of the differences in memory representation 
across stages and the elucidation of the underlying mechanisms are 
essential. Guided by this transformative perspective of memory, many 
fascinating questions await to be addressed. For example, future studies 
should further characterize the multifaceted nature of memory repre-
sentations and their dynamic changes, which might benefit from imag-
ing tools with high spatial and temporal resolutions and advanced 
modeling techniques, such as network models and DNNs. From example, 
recent iEEG studies in humans have revealed novel coding schemes of 
memories (Liu and Xue, 2022; Rutishauser et al., 2021). One fruitful 
direction is to extend studies beyond a single event to examine how 
multiple events and event sequences are represented and transformed in 
the brain. 

Future studies should also further examine the functional roles of 
these different aspects of memory representations, which might signif-
icantly advance the principles of neural-psychological representation 
correspondence (NPRC). This goal could be achieved by jointly exam-
ining the psychological characteristics of memory behaviors (e.g., 
priming vs. familiarity vs. recollection and true vs. false memory) and 
the contents and formats of multifaceted neural representations. For 
example, studies could examine how representations in different brain 
regions (Zhu et al., 2019) or different representations in the same region 
(Bone et al., 2020; Lee et al., 2019) contribute to true and false memory, 
as well as the vividness of memory (Bone et al., 2020). Both experi-
mental manipulations and large-scale individual difference approaches 
(Sheng et al., 2022) would be very fruitful. 

Furthermore, elucidating the driving forces underlying 
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transformations is essential. On the one hand, researchers should 
investigate how goal-directed task requirements, attention, different 
conscious states (awake vs. sleep), and various memory stages (e.g., 
encoding vs. retrieval) might modulate memory transformations. For 
example, how do reactivation during rest and sleep differently transform 
memory representations? On the other hand, future studies should 
further examine how these transformations are shaped and constrained 
by the neurophysiological properties, connectivity patterns, and infor-
mation coding schema in different brain regions. These areas of research 
might provide a better mechanistic understanding of the roles of 
different brain regions in memory. 

Finally, future studies could place memory into the broader context 
of brain information processing to understand the evolutionary and 
computational benefits of memory transformation. For example, these 
studies may investigate how memory transformation improves predic-
tion, psychosocial well-being, and the chance of survival by contributing 
to the learning speed, retention rate, and generalization. 

Given the unparallel power of representational analysis in informing 
on the nature of memory, these studies would provide a deep mecha-
nistic understanding of the well-documented dynamic memory behav-
iors and stronger support to the transformative memory theories. They 
will also significantly improve our understanding of the nature of 
memory, its formation and retention, and its relationship to other 
cognitive functions, such as decision-making and problem-solving. More 
broadly, progress in these areas will have tremendous potential to reveal 
the mysteries of the human mind and inspire brain-like artificial 
intelligence. 
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