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Abstract
Inter-temporal decision-making is ubiquitous in daily life and has been considered as a critical characteristic associated with an
individual’s success. Such decisions require us to tradeoff between short-term and long-term benefits. Prior studies have indicated
that inter-temporal decision involves various brain regions that tend to occupy the central hubs. However, it is unclear whether the
functional connectivities among hub as well as non-hub regions can predict discounting behaviors. Here, we combined with
graph-theoretical algorithm and multivariate pattern analysis to explore whether voxel-wise functional connectivity strength in
the whole brain could predict discounting rates (indexed as logk, based on the adaptive delay-discounting task) in a relatively
large sample (n = 429) of young adults. Results revealed that short- and long-distance as well as all-range non-hub functional
connectivity strength in the limbic system (i.e., medial orbitofrontal cortex and parahippocampus) were inversely associated with
discounting rates. Furthermore, these results were robust and did not appear to be due to potential confounding factors. Above
weight-based degree metric is commonly indicative of the communication pattern of local and global parallel information
processing, and it therefore provides novel insights into the neural mechanisms underlying inter-temporal decision-making from
the perspective of human brain topological organizations.
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Introduction

Inter-temporal decision-making has been considered as a crit-
ical characteristic associated with an individual’s success. In
such choices, people are more likely to prefer immediate out-
comes rather than future outcomes, which is also called delay-

discounting phenomenon (Bickel et al. 1999; McClure et al.
2004). Steep delay discounting behavior was often observed
in substantial psychiatric disorders such as substance abuse
(Bickel et al. 1999; Hu et al. 2015), pathological gambling
(Alessi and Petry 2003), and attention deficit hyperactivity
disorder (ADHD) (Paloyelis et al. 2010).
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Accumulated evidence has consistently implicated that
inter-temporal decision-making did not depend on any isolat-
ed brain regions but several functional networks and their
communication/integration between them. Such networks
have been reliably summarized as the valuation network
(i.e., ventral striatum [VS], ventromedial prefrontal cortex
[VMPFC], and posterior cingulate cortex [PCC]), cognitive
control network (i.e., dorsolateral prefrontal cortex [dlPFC],
and superior parietal lobule [SPL]), and prospection network
(i.e., hippocampus, parahippocampus, and medial
orbitofrontal cortex [mOFC]) (Berns et al. 2007; Lempert
and Phelps 2016; Peters and Büchel 2011). Furthermore,
connectome-based analyses consistently highlighted the im-
portance of network-based interaction (i.e., fronto-parietal net-
work, default mode network, and salience network) instead of
regional dynamics (Chen et al. 2017; Li et al. 2013; van den
Bos et al. 2014; Van Den Bos et al. 2015a) in the inter-
temporal decisions. In addition, the neuroanatomical evidence
has also identified a series of structural subnetworks associat-
ed with discounting behaviors, including the valuation net-
work (i.e., VS and VMPFC) and prospection network (i.e.,
hippocampus and parahippocampus) (Dombrovski et al.
2012; Yu 2012). Taken together, network-based analytical
framework is a critical step to explore the mechanisms under-
lying the inter-temporal decisions, but the extent to what the
global and local information communications and integrations
of voxel-wise whole-brain network support human inter-
temporal decision-making is still not clear.

Using graph-theoretical algorithms and multi-modal neu-
roimaging data, prior studies have examined the possible re-
lationships between delay-discounting and multiple topologi-
cal metrics of human brain connectomes, including the small-
world organization, network efficiency, modularity dynamic,
hierarchical structure, cardinal nodal attributes in degree and
betweenness centrality in both functional and structural brain
networks (Cai et al. 2020; Chen et al. 2019b; Li et al. 2013).
Some of them revealed decreased global topological organi-
zations including small-world property and rich-club regimes
in both functional and structural brain networks, and also ob-
served the dreadful local topological dynamics in the modu-
larity of functional connectome in the participants with steep
discounting rates (Chen et al. 2019b). Others indicate that the
discounting rates could be successfully predicted by function-
al connectivity intensity, namely nodal degree, within and
between several sub-networks via linear prediction model
(Cai et al. 2020; Li et al. 2013). Such nodal degree is widely
used to quantify nodal properties and importance in a graph,
and is defined as the number of connections that link it to the
rest of the network (Bondy and Murty 1976; Bullmore and
Sporns 2009). Moreover, the cortex contains a small num-
ber of nodes, referred to as hubs that have disproportion-
ately numerous connections (Sporns et al. 2007). Such hubs
in functional networks were reported in several areas,

including the default-mode network and executive control
network that commonly were involved to inter-temporal
decisions (Oldham and Fornito 2019; van den Heuvel and
Sporns 2013), and are thought to be crucial to efficient
communication between separated and long-distance
regions (Bullmore and Sporns 2009; Freeman et al. 1991).
However, to our knowledge, no study has systematically in-
vestigated whether delay-discounting rates could be predicted
by the topological metrics in these hub regions, especially
from a voxel-wise whole-brain approach, which overcomes
the drawbacks of parcellation-based degree computation (de
Reus and Van den Heuvel 2013).

Multi-voxel pattern analysis (MVPA) approach has widely
been applied in human brain imaging studies and led to fun-
damental advances in the understanding of how the brain rep-
resents information as well as is particularly suitable for prob-
ing subtle and spatially distributed differences between sepa-
rated cognitive states (Haxby 2012; Haxby et al. 2014;
Norman et al. 2006). In decades, this approach was widely
used to distinguish category-dependent and category-
independent goal value codes (McNamee et al. 2013), classify
different types of valuation (Clithero et al. 2009), decode gain
and loss processing (Jimura and Poldrack 2012), and predict
the following choices (Zha et al. 2019) and individual’s be-
havioral performances (Wang et al. 2016) in the decision-
making domain. Furthermore, MVPA is more sensitive to
distributed coding of information compared to univariate anal-
ysis (Jimura and Poldrack 2012;Wang et al. 2014a). Although
the advantages of MVPA have been ascertained in the do-
mains of decision-making, its corresponding insights into
inter-temporal decision-making are still poorly unknown.

In the current study, we collected resting state fMRI data
and assessed everyone’s delay-discounting parameter using
an adaptive delay-discounting task in a relatively large sample
(n = 429) of young adults. Using a voxel-wise whole-brain
connectivity analysis approach and MVPA, we comprehen-
sively examined the potential contributions of the network
nodal connectivity capacity to individual variability in inter-
temporal decision-making.

Methods and materials

Participants

Four hundred and twenty-nine (315 females and 114 males)
healthy Chinese college students were recruited in this study
(age ranged from 17 to 26 years old, with mean age = 19.58 ±
1.59 years). Subjects were included if they had high-quality
structural and functional imaging data, with small head mo-
tion during fMRI scan (frame-wise displacement [FD] <
1 mm), and good model-fitted behavioral scores (k) based
on previous studies (Wang et al. 2016). All subjects reported
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no history of psychiatric or neurological disease. Written in-
formed consent was obtained for each adult participant (age
18–26) before the experiment. Four adolescent participants
(age 17) were required to sign the consent form after receiving
the verbal consent from their parents. The Institutional Review
Boards of Southwest University and Beijing Normal
University approved this study.

Adaptive delay discounting task

The adaptive delay-discounting task was used to measure
delay-discounting rate (See previous study for details, van
den Bos et al. 2014). In brief, subjects were asked to make a
decision between a fixed but immediate monetary option
(SS)(RMB ¥60) and a varied delayed but larger monetary
option (LL)(RMB ¥78–108 to be paid in 15 to 45 days later).
The size of the delayed reward was adjusted to converge to-
ward the same subjective value as the immediate option
(RMB ¥60). We used a hyperbolic function (SV = A/(1 +
k*D)) to calculate individual’s delay-discounting rate, where
SV is the subjective value of the LL option, A is the magni-
tude in Chinese dollars of the delayed reward, D is the delay
time, and k is the delay-discounting rate. Initial discounting
rate k was set to 0.02 and was increased or decreased when the
subjects chose the immediate or delayed option, respectively.
Based on past literature (Johnson and Bickel 2002), hypothet-
ical money served as a valid proxy for real money. In addition,
all participants received monetary compensation of RMB
500 at the end of our experiments.

Behavioral data analysis

All behavioral and statistical analyses were conducted using
MATLAB (MathWorks, Natick, MA, USA). In the
discounting task, we used the multidimensional unconstrained
nonlinear minimization function (fminsearch) of the optimi-
zation toolbox implemented in MATLAB to calculate every-
one’s magnitude of delay-discounting rate (k). In this process,
the softmax function was utilized to calculate the probability
of choosing the immediate option (PSS) on trial t as a function
of the di f ference in VSS and VLL: PSS = 1/(1 +
exp.(−1*m*(VSS-VLL))), where m is the decision slope, VSS

and VLL are the subjective values of SS and LL options, re-
spectively. Individual discounting rates were determined as
the value k that maximized the likelihood of the observed
choices. We further used log-transformed k to represent deci-
sion impulsivity (logk) based on prior research (Van Den Bos
et al. 2015b; Wang et al. 2016).

Brain imaging data acquisition

All structural and resting-state functional MRI images were
acquired on a Siemens 3 T Trio scanner (Siemens Medical

Systems, Erlangen, Germany). High-resolution T1-weighted
structural images were acquired by using a Magnetization
Prepared Rapid Acquisition Gradient-Echo (MPRAGE) se-
quence: TR/TE = 1900 ms/2.52 ms; inversion time (TI) =
900 ms; flip angle = 9 degree; FOV = 256 × 256 mm2;
Slice = 176; thickness = 1.0 mm; voxel size = 1 × 1 × 1 mm3.
Functional MRI images were collected based on the Gradient
Echo type Echo Planar Imaging (GRE-EPI) sequence; TR/
TE = 2000 ms/30 ms; Flip angle = 90 degree; Resolution ma-
trix = 64 × 64; FOV = 220 × 220 mm2; Thickness = 3 mm;
slip gap = 1 mm; acquisition voxel size = 3.4 × 3.4 × 4 mm3.
A total of 32 slices were employed to cover the whole brain.
Each section contained 242 volumes. During the resting-state
scanning, all subjects were required to relax and keep their
eyes closed but not to sleep (Damoiseaux et al. 2006).

Resting-state fMRI preprocessing

The resting-state fMRI data were preprocessed using Data
Processing Assistant for Resting-State fMRI (DPARSF,
http://resting-fmri.sourceforge.net/) implemented in the
MATLAB (Math Works, Natick, MA, USA) platform. The
first 10 volumes of each participant were discarded due to the
magnetization disequilibrium and the subject’s adaptation to
the scanning noise. The remaining 232 volumes were slice-
timing corrected and then realigned to the middle slice of the
brain to correct for head motion. All realigned images were
spatially normalized to the MNI template, resampled into 3 ×
3 × 3 mm3 resolution. White matter, cerebrospinal fluid, glob-
al signal, and six motion parameters for head movement were
regressed out as nuisance variables to reduce the effects of
head motion and non-neuronal BOLD fluctuations (Fox
et al. 2005). Temporal filtering (0.01–0.08 Hz) and voxel-
wise linear detrending were also applied to the resting-state
fMRI data (Shin et al. 2014). It should be noted that the strat-
egy of smoothing was not conducted in this study because the
multivariate pattern analysis.

Voxel-wise network nodal connectivity
measurements

To assess network nodal connectivity, we first calculated
Pearson’s correlations between the time series of all pairs of
voxels within a predefined gray matter mask with 45,892
voxels by aligning probability SPM gray matter mask (gray
matter probability values higher than 0.2) to atlas space, which
yielded a whole-brain functional connectivity matrix. Then,
we transformed the individual correlation matrices to z-score
matrices using a Fisher’s r-to-z transformation to improve the
normality of the correlation matrices. Third, a threshold (here
is r = 0.2, the threshold effects were estimated in the
“Validation Analysis”) was chosen to eliminate the effects
of signal noise from weak or negative correlations. Finally,

Brain Imaging and Behavior

http://restingmri.sourceforge.net/


for each voxel, we calculated its functional connectivity
strength (FCS) as the sum of the weights (z-values) of the
connections between a given voxel and all of the other voxels.
Notably, the FCS matric reflects the “degree centrality” of the
weighted networks in terms of graph-theory and captures the
global communication ability of brain regions in the whole
networks (Liang et al. 2013).

Support vector regression (SVR) analysis

The preprocessed FCS data without smoothing were
employed to predict individual k using Epsilon-intensitive
support vector regression (SVR) (Drucker et al. 1997) imple-
mented in PyMVPA (Multivariate Pattern Analysis in Python:
http://www.pymvpa.org/). The linear kernel was used in
this study due to high generalization and interpretation
(Cox and Savoy 2003; Norman et al. 2006). A searchlight
procedure with a three-voxel radius (9 mm) sphere
(Kriegeskorte et al. 2006) was utilized to produce the
decoding accuracy in the neighborhood of each voxel.
Following the previous literature (He et al. 2013; Jimura and
Poldrack 2012; Wang et al. 2016), we set the ε parameter in
the SVR to be 0.01.

A ten-fold cross-validation was applied. The 429 subjects
were divided into 10 groups of 42 or 43 subjects, with
matched gender as well as matched logk, depending on the
specific analysis. We firstly regressed out the confounding
variables such as gender and age from the whole sample.
Then, an SVR model was trained based on 386 or 387 sub-
jects. Once trained, this SVR model then generated a predic-
tion from the scores of the excluded 42 or 43 subjects based on
their imaging data. Voxel-wise accuracy of SVR prediction
was then calculated as the Pearson’s correlation coefficient
between actual and predicted values of the logk and then trans-
formed to the corresponding Z-score map. Multiple compari-
sons were corrected at the cluster level for each analysis (z >
3.1, p < 0.001, family-wise error (FWE) corrected p <
0.05)(Eklund et al. 2016).

Univariate analysis

To further explore the correlations between nodal functional
connectivity and behavioral delay-discounting rate (logk), we
selected the significantly predicted brain areas as the regions
of interest (ROIs), including the left parahippocampus
(lPHG), hippocampus (HIP), medial orbitofrontal cortex
(mOFC), and frontal pole (FP), because these brain regions
frequently are observed involved into inter-termporal deci-
sion-making in considerable studies (Peters and Büchel
2011). Then, we extracted these ROIs’ average functional
connectivity strengths and correlated them with behavioral
discounting rate (logk). Due to the double dipping issues, we

only presented the correlational directions without reporting
the correlation coefficients.

Next, to investigate whether the brain regions related to
delay-discounting occupied the brain hub regions or not, we
used two strategies. First, for each subject, we computed the
mean FCS within the discounting-related brain areas and the
mean FCS of the remaining areas. We then used paired-
sample t-tests to determine whether the impulsivity-related
regions had higher FCS than all of the other regions.
Second, to directly estimate whether the discounting-related
brain regions were brain hubs, we first computed a group-
level FCS maps by averaging each individual’s FCS maps,
and then defined the brain network hubs by identifying voxels
with the FCS values of 1 SD above the mean based on prior
studies (Liu et al. 2017). Then, we calculated the hub propor-
tion, Phub, which is the proportion of discounting-related re-
gions belonging to brain hubs.

Finally, to further examine the effects of anatomical dis-
tance on connectivity analysis, we divided the regional func-
tional connectivity strength into two categories, short-distance
and long-distance regional functional connectivity strength.
The short-distance regional functional connectivity strength
of a voxel referred to the sum of those connections (Z-
values) between the voxel and other GM voxels with anatom-
ical distances less than 75 mm to the given voxel, whereas the
long-distance regional functional connectivity strength of a
voxel referred to the sum of its connections (Z-values) with
distances greater than 75 mm (Achard et al. 2006; He et al.
2007; Wang et al. 2014b). In this study, the anatomical dis-
tance between two GM voxels was calculated based on the
Euclidean distance between their MNI coordinates. Hence, we
can further investigate whether distance-dependent FCS can
also predict decision impulsivity.

Controlling for potential confounding factors

To validate our major findings, we examined how potential
confounding factors might have influenced the experimental
results. First, considering the skewed distribution of behavior-
al logk, we conducted a rank-based inverse Gaussian transfor-
mation (Beasley et al. 2009) and further examined the predic-
tion of FCS on this transformation-based delay-discounting
rate. Second, due to the phenomenon that head motion has
an adverse influence on functional connectivity-related anal-
yses, we regressed out the effect of head motion and then
performed MVPA again. Third, global signals have been con-
sidered another factor that influences the network-related sta-
tistical analyses and thus we repeated our network analysis
without global signal regression. Fourth, to determine whether
the major results depend upon the selection of correlation
thresholds for connectivity, we recomputed the FCS maps
using different correlation thresholds (i.e., 0.1, 0.3 and 0.4)
and then re-performed MVPA. Finally, we evaluated whether
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the smoothing process would change the major results in light
of the fact that the smoothing process reduces the signals of
brain in MVPA and then re-performed the MVPA with a
Gaussian kernel with a full width half maximum of 4 mm.

Results

Behavioral results

The mean discounting rate (logk) was −1.96 ± 0.49, ranging
from −3.64 to −0.75. Figure 1a depicts the distribution of
discounting rates in whole sample, which manifested skewed
(Kolmogorov-Smirnov test, p < 0.001). The mean head mo-
tion (FD) was 0.108 ± 0.044, ranging from 0.043 to 0.255.
There was no significant correlation between the discounting
rates and head motion (r = −0.025, p = 0.605), which suggests
that head motion should have had little impact on subsequent

analyses. Additionally, gender differences were also not de-
tected in impulsivity (t(427) = 1.20, p = 0.231).

Network nodal connectivity associated with delay-
discounting rate

The voxel-wise multivariate analysis revealed that individ-
uals’ k could be successfully predicted by the FCS values,
primarily those from the right medial orbitofrontal cortex
(mOFC; MNI = 24, 18, −18, Z = 5.31), left parahippocampus
gyrus (PHG; MNI = −24, −2, −36; Z = 4.66), left precuneus
(MNI = −18, −66, 34, Z = 4.68), right lateral orbitofrontal cor-
tex (LOFC; MNI = 40, 40, −18, Z = 4.19), left putamen
(MNI = −30, −6, −6; Z = 4.65), right frontal pole (FP;
MNI = 12, 64, −12, Z = 3.79), left temporal fusiform cortex
(TFC; MNI = −36, −24, −24, Z = 3.80), right occipital pole
(MNI = 24, −94, 0; Z = 4.83), and right hippocampus
(MNI = 26, −20, −12, Z = 3.63) (Fig. 1b and Table 1).

Fig. 1 The distribution of
individuals’ delay-discounting
rates (logk) and the brain regions
whose FCS predicted discounting
behaviors. (a) The distribution of
the discounting rates was skewed
(Kolmogorov-Smirnov test, p <
0.001). (b) MVPA revealed that
the FCS values in these regions
could predict decision impulsivity
(z > 3.1, FWE corrected p < 0.05).
(c) Scatter plots show correlations
between discounting rates and the
FCS of the sphere clusters with
3 mm radius based on the peak in
mOFC, HIPP, lPHG, and FP.
Abbreviation: HIP, hippocampus;
mOFC, medial orbitofrontal cor-
tex; lPHG, left parahippocampus
gyrus; FP, frontal pole
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Furthermore, the correlational analysis revealed that, the FCS
values in these brain regions that are widely demonstrated
involved into inter-temporal decisions (i.e., mOFC, left
PHG, hippocampus, and FP) were negatively associated with
decision impulsivity (Fig. 1c).

To rule out the possibility of the impact of the skewed
behavioral distribution on the findings, we used a rank-based
inverse Gaussian transformation method to transform the

behavioral scores and re-performed the multivariate pattern
analysis. Fig. S1 displays the main results, which substantiat-
ed that behavioral distribution did not change the major find-
ings. Moreover, when controlling additionally for gender and
age, these results still remained significant (Fig. S1). In sum,
our main findings were not confounded by biased gender ra-
tio, skewed behavioral distribution, or subjects’ age.

Engagement of the non-hub functional networks in
inter-temporal decision-making

The brain regions related to delay-discounting were predom-
inantly located in the non-hub areas, as shown by the
discounting-related regions’ lower FCS values than those of
the other regions (t(428) = −13.30, p = 4.90 × 10−34) (Fig. 2a).
A stringent FCS threshold based on previous studies (Liu et al.
2017) (i.e., above 1 SD of the mean FCS) led to the identifi-
cation of areas predominantly distributed in the PCC/PCU, the
medial prefrontal cortex (MPFC), the lateral frontal and pari-
etal cortices (Fig. 2b), which was largely consistent with pre-
vious studies (Buckner et al. 2009). A further analysis re-
vealed that the overlap between the discounting-related re-
gions and the hub regions was small (3.1%, black color, Fig.
2b). Taken together, these findings indicated that non-hub
nodal capacity plays a critical role in inter-temporal deci-
sion-making.

Connectivity distance and the relation between FCS
and decision impulsivity

For short-distance functional connectivity strength, individ-
uals’ logk could be successfully predicted by the FCS values
in the right mOFC (MNI = 24, 18, −20, Z = 4.11), right
parahippocampus (MNI = 22, −10, −28, Z = 3.95), right later-
al OFC (MNI = 42, 40, −18, Z = 4.30), left temporal pole
(MNI = −24, 4, −28, Z = 4.32), left LOC (MNI = −26, −74,
34, Z = 4.67), right LOC (MNI = 34, −58, 42, Z = 5), left
middle temporal gyrus (MNI = −64, −42, −12, Z = 4.85), right
supramarginal gyrus (SMG;MNI = 66, −40, 18, Z = 4.90), left
FP (MNI = −48, 38, 14, Z = 4.82), right FP (MNI = 52, 42, 4,
Z = 4.09), right temporal pole (MNI = 46, 12, −24, Z = 4.23),
right LOC (MNI = 34, −58, 42, Z = 5.00), and right thalamus
(MNI = 18, −18, 12, Z = 4.69) (Fig. 3a and Table 1).

For long-distance functional connectivity strength, individ-
uals’ k could be predicted by the FCS values in several brain
areas, including the left dorsomedial prefrontal cortex
(DMPFC; MNI = −12, 30, 36, Z = 4.21), precuneus/PCC
(MNI = 0, −60, 18, Z = 4.92), right mOFC (MNI = 16, 24,
−18, Z = 4.19), right lateral OFC (MNI = 24, 28, −16, Z =
3.94), right parahippocampus (MNI = 24, −24, −18, Z =
4.05), left parahippocampus (MNI = −30, 0, −26, Z = 3.73),
left LOC (MNI = −30, −70, 34, Z = 3.63), left inferior frontal

Table 1 Brain regions whose FCS predicted delay-discounting rates
across different ranges in multivariate analysis

Brain regions L/R No. Voxels MNI
Coordinates

Z

X Y Z

All-range FCS

Medial OFC R 745 24 18 −18 5.31

Parahippocampus gyrus L 259 −24 −2 −36 4.66

Precuneus L 119 −18 −66 34 4.68

Lateral OFC R 93 40 40 −18 4.19

Putamen L 85 −30 −6 −6 4.65

Frontal Pole R 69 12 64 −12 3.79

Temporal fusiform cortex L 58 −36 −24 −24 3.80

Occipital pole R 35 24 −94 0 4.83

Hippocampus R 15 26 −20 −12 3.63

Short-distance FCS

Medial OFC R 175 24 18 −20 4.11

Temporal Pole L 162 −24 4 −28 4.32

Lateral occipital cortex L 162 −26 −74 34 4.67

Middle temporal gyrus L 96 −64 −42 −12 4.85

Supramarginal gyrus R 86 66 −40 18 4.90

Frontal Pole L 80 −48 38 14 4.82

Temporal pole R 78 46 12 −24 4.23

Lateral occipital cortex R 70 34 −58 42 5.00

Thalamus R 67 18 −18 12 4.69

Parahippocampus R 61 22 −10 −28 3.95

Temporal pole R 55 60 6 −30 4.15

Frontal Pole R 33 52 42 4 4.09

Lateral OFC R 32 42 40 −18 4.30

Long-distance FCS

Precuneus – 576 0 −60 18 4.92

Medial OFC R 143 16 24 −18 4.19

DMPFC L 36 −12 30 36 4.21

Parahippocampus R 36 24 −24 −18 4.05

Parahippocampus L 27 −30 0 −26 3.73

Lateral occipital cortex L 23 −30 −70 34 3.63

Lateral OFC R 23 24 28 −16 3.94

Insular L 23 −36 12 −2 3.63

Inferior Frontal gyrus L 22 −50 30 18 4.02

Abbreviation: OFC, orbitofrontal cortex; DMPFC, dorsal medial prefron-
tal cortex; L, left; R, right
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Fig. 3 The relationships between the short/long-distance FCS and inter-
temporal decision-making. (a) and (b) respectively indicates the regions
that predicted the discounting rates using MVPA (z > 3.1, FWE corrected
p < 0.05). (c) shows the conjunction regions that predicted discounting
behaviors among all-range, long-distance and long-distance FCS

analysis. (d) Scatter plots display the prediction directions between the
nodal FCS in the conjunction analysis and discounting behaviors in short-
and long-distance FCS conditions. DMPFC, dorsal medial prefrontal cor-
tex; FCS, functional connectivity strength

Fig. 2 Non-hub functional network in relation to inter-temporal decision-
making. (a) The bar map shows that the mean FCS value (Z-score) within
the significant regions that predicted delay-discounting (DD) was smaller
than that of other regions. The error bar represents SD, *** p < 0.001. (b)

The overlapping maps between the regions that predicted DD and the
network hubs (above 1 SD beyond the mean). Blue indicates the hub
areas, and red indicates impulsivity-related regions. The overlapping re-
gions (3.1%, Phub) are presented as black patches
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gyrus (IFG; MNI = −50, 30, 18, Z = 4.02), and left insula
(MNI -36, 12, −2, Z = 3.63) (Fig. 3b and Table 1).

A conjunction analysis of all-range, short-distance, and
long-distance FCS revealed that logk could be predicted by
the FCS values in several common regions, including mOFC,
parahippocampus, PCC, and LOC (Fig. 3c). The correlational
ana lys i s sugges ted tha t the FCS in mOFC and
parahippocampus were inversely associated with decision im-
pulsivity regardless of the functional connectivity distance,
while both short- and long-distance FCS in PCC and short-
distance FCS in LOCwere positively associated with decision
impulsivity (Fig. 3d).

Consideration of additional potential confounding
factors

We assessed the reproducibility of our major results after con-
sidering different potential confounding factors such as head
motion, global signal, correlation threshold, and smoothing
process. The results remained consistent under these factors,
as indicated by the high frequency of the spatial overlap of the
impulsivity-related regions among validations (Fig. 4).

Discussion

This study utilized a multivariate pattern analysis approach
and graph-theoretical algorithms to investigate whether FCS
can predict delay-discounting rate in a relatively large sample.
Our results indicated that short- and long-distance as well as
all-range non-hub FCS in the limbic system (i.e., mOFC and
parahippocampus) could successfully predict discounting
rates. These results were robust and did not appear to be due
to potential confounding factors. Our findings indicated an

intrinsic functional network organization underlying the indi-
vidual variability in inter-temporal decision-making, and the
brain non-hub regions play an indispensable role in network
organization and communication related to impulsivity.

In human connectomes, the degree was proven to be the
most pivotal nodal measures to quantitatively delineate the
position of nodes within the networks, reflecting the capability
of brain regions on parallel information processes (Hagmann
et al. 2008; Sporns 2011). Previous studies have demonstrated
close spatial couplings between functional brain regions with
higher degree, indexed as FCS, and regional cerebral blood
flow in both resting-state and task demands, suggesting the
physiological basis of blood supply for brain functional topo-
logical metrics especially for FCS (Liang et al. 2013). In re-
cent years, this metric has widely used to bridge between brain
global communication/functional integration and numerous
cognitive processes, including spatial working memory (Liu
et al. 2017), language (Zhang et al. 2018), executive
function(Zhang et al. 2018), and even psychiatric disorders
such as Alzheimer’s disease (Franzmeier et al. 2018).
Collectively, the FCS might be a sensitive index to capture
human brain topological organization and corresponding as-
sociations with cognitive and behavioral performances.
Encouragingly, the present study likewise observed such as-
sociations of delay-discounting behavior with brain topologi-
cal metric of FCS in several brain regions, including frontal
pole, hippocampus, parahippocampus, and medial OFC.

The brain areas mentioned above have been frequently
demonstrated engaged to inter-temporal decision-making in
both functional and structural MRI studies. More specially,
the frontal pole (FP) is a part of the prefrontal cortex and
approximately corresponds to Brodmann’s area 10 (Öngür
et al. 2003; Ramnani and Owen 2004). There is mounting
evidence that FP predominantly involves in many higher-

Fig. 4 Conjunction map after
controlling for potential
confounding factors. The brain
map shows the frequencies of the
spatial overlap of the impulsivity-
related regions identified by eight
different image preprocessing and
data analysis strategies. The re-
gions with higher frequencies in-
dicate higher stability in the vali-
dation analysis. N, the number of
occurrences in the validations

Brain Imaging and Behavior



level functions such as planning of future actions (Bludau
et al. 2014), suppression and maintenance of internally-
generated thoughts (Burgess et al. 2003), abstract information
encoding (Bechara and Damasio 2005), and even being pref-
erentially activated by episodic memory (Bludau et al. 2014).
Neuroanatomical and functional connectivity studies also in-
dicated that human FP receives a wide of projection from the
OFC, amygdala, DLPFC, vmPFC, ACC, and PCC (Liu et al.
2013), suggesting a possible pattern of information communi-
cation and function integration in this region. Our previous
studies also observed that FP represents the magnitude of
delayed reward during inter-temporal choices (Wang et al.
2014a), and its gray matter volume (GMV) and regional ho-
mogeneity (ReHo) likewise is able to predict individual
discounting behavior (Lv et al. 2019; Wang et al. 2016).
Furthermore, the delay-discounting rates were significantly
associated with the functional coupling of this seed with a
series of brain areas, including vmPFC, VS, DLPFC, OP,
and LOC (Wang et al. 2016). These studies, along with our
present findings, suggest that FP not only engages to value
representation but also is involved in higher-level integrated
processing in inter-temporal decision-making.

Beyond the prefrontal system, limbic system is composed
of the hippocampus, parahippocampus, amygdala, OFC, and
ACC, which also play a crucial role in the delay-discounting.
In particular, a number of neuroimaging studies have shown
that hippocampus is able to up-modulate neural valuation sig-
nal in the ACC in order to decrease individual preferences for
immediate rewards (Peters and Büchel 2010), especially via
imagining in unfamiliar conditions (Sasse et al. 2015), and the
white-matter integrity of this area (i.e., parahippocampus) was
significantly correlated with the delay-discounting rates (Yu
2012). Also, existing studies have observed that the activation
pattern of the limbic system (i.e., parahippocampus) can pre-
dict individuals’ inter-temporal decisions (Chen et al. 2019a).
In addition, increased activations in this system, especially for
mOFC and putamen, reduced impulsive decisions (McClure
et al. 2007; McClure et al. 2004), while lesions to this system
were associated with steeper delay-discounting (Mariano et al.
2009; Mobini et al. 2002; Sellitto et al. 2010). Furthermore,
neuroanatomical evidence of the limbic system, especially for
the orbitofrontal cortex, reveals that this system receives in-
formation from the ventral or object processing visual stream,
and taste, olfactory, and somatosensory inputs (Rolls 2004),
which suggests the involvement of this system in sensory
integration including affective value of reinforcers
(Kringelbach 2005). Together with our present findings, these
studies provide consistent evidence that global information
communication/integration in the limbic system is crucial for
individuals’ inter-temporal decisions.

Connectome-based studies point out that brain regions with
high FCS during the state of spontaneous neuronal activity
might reflect the possibly high-effective information

communication with other brain regions, which might support
the possibility of information transfer during the task state.
One possible interpretation is that these regions, also namely
as “hubs” in brain network, frequently occupy a pivotal posi-
tion in the communication and integration of the network to
support various mental processes across a broad range of cog-
nitive tasks, manifesting as increased regional cerebral blood
flow as the cognitive demand (Cole et al. 2013; Liang et al.
2013; van den Heuvel and Sporns 2013). The structural hubs
involve the precuneus, insula, superior parietal cortex, and
superior frontal cortex via structural network analysis
(Iturria-Medina et al. 2008), whereas the functional hubs are
predominantly located in the ventral and dorsal precuneus,
posterior and anterior cingulate gyrus, ventromedial frontal
cortex, and inferior parietal brain regions (Tomasi and
Volkow 2010; Zuo et al. 2011). Unexpectedly, network nodal
connectivity capacity in hub brain regions was not observed
predictive of individuals’ inter-temporal decision-making in
our present study, which is consistent with previous findings
of no significant correlations between degree/betweenness
centrality and delay-discounting rates (Chen et al. 2019b).
These findings suggest that in a typical population, only solely
hub region with higher global communication could not cap-
ture all characteristics of inter-temporal decisions because
rich-club organization embedded in brain network’s infra-
structure was observed associated with discounting behavior
(Chen et al. 2019b).

In addition to the all-range connectivity, both short- and
long-distance functional connectivity also exhibited similar
prediction on delay-discounting, which suggest that local
and global communication with other brain regions support
the implementation of inter-temporal choices. Disruption in
local and global functional connectivity has been frequently
observed in several psychiatric diseases such as AD/MCI (Liu
et al. 2014), autism (Shukla et al. 2011), and even brain tumor
patients (Douw et al. 2008), which imply that disconnection of
brain regions is a possible reason explaining the underlying
mechanisms of some brain diseases. Indeed, the present find-
ings showed a negative correlation between short/long-
distance FCS and discounting behavior, manifesting modula-
tion decreases from hub regions possibly. To our knowledge,
this is first work to systematically examine distance-based
functional connectivity on inter-temporal decision-making,
and further support the notion that parallel information pro-
cessing is the most critical characteristics of human brain to-
pological organization and changes in this metric are likely to
manifest as dysfunction on cognitive processes such as deci-
sion-making, and even as a disease.

One particular region’s long-distance connections (but not
its short-distance connections) found in present study was the
dorsomedial prefrontal cortex (DMPFC), which has been
found by previous studies to play an influential role in inter-
temporal choices (Wang et al. 2014a). Specifically, the
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anterior and posterior portions of DMPFC respectively repre-
sent delayed rewards and immediate rewards, and the value
representation signals from these two subregions are relayed
to the ventral striatum and ventromedial prefrontal cortex to
compare value magnitude between two options during inter-
temporal choice (Wang et al. 2014a). Moreover, morpholog-
ical characteristics and functional organization of DMPFC
(i.e., grey matter volume, regional homogeneity, and activa-
tion pattern during risky decision) have all been associated
with discounting behaviors (Lv et al. 2019; Lv et al. 2020;
Wang et al. 2016). Our study adds to these previous studies by
emphasizing the role of long-distance interregional informa-
tion communication of this target region in inter-temporal de-
cision-making.

Several limitations of the current study need to be men-
tioned. First, this was a correlational study, so it could not
provide definitive evidence for a causal relation between in-
trinsic brain functional connectivity in the limbic system and
inter-temporal decision-making. Second, the functions of the
relevant brain regions were inferred based on findings of the
current and previous studies. Future research needs to inves-
tigate the specific functions and pathways of the limbic system
including mOFC and parahippocampus with other brain re-
gions, especially using task-based fMRI design. Moreover,
future research is also needed to investigate the relationship
between white matter fiber connectivity strength and delay-
discounting in order to provide cross-validation of our results
and to develop a comprehensive perspective for human deci-
sion impulsivity. Additionally, it is worth noting that 101 ad-
olescents (age 17–18) were included in our analysis but no
significant group differences between this group and adults
group were observed in impulsivity scores (t(427) = 0.580,
p = 0.494) and in the functional connectivity strength. Such
findings perhaps hint that neurodevelopment changes from
adolescence to adulthood may do not influence our key con-
clusion of intrinsic non-hub connectivity important for inter-
temporal decision-making.

Conclusions

Our study showed that intrinsic non-hub functional connec-
tivity (i.e., mOFC and parahippocampus) could predict delay-
discounting rates, and provided further support for the impor-
tance of distance-based functional connectivity, especially for
DMPFC region, in the inter-temporal decision-making. These
outcomes thus indicated this notion that the local and global
parallel information communication capacity support the im-
plementation of human high-level cognition such as decision-
making.
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