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Familiarity, or memory strength, is a central construct in models of cognition. In previous categorization and long-term memory
research, correlations have been found between psychological measures of memory strength and activation in the medial temporal lobes
(MTLs), which suggests a common neural locus for memory strength. However, activation alone is insufficient for determining whether
the same mechanisms underlie neural function across domains. Guided by mathematical models of categorization and long-term mem-
ory, we develop a theory and a method to test whether memory strength arises from the global similarity among neural representations.
In human subjects, we find significant correlations between global similarity among activation patterns in the MTLs and both subsequent
memory confidence in a recognition memory task and model-based measures of memory strength in a category learning task. Our work
bridges formal cognitive theories and neuroscientific models by illustrating that the same global similarity computations underlie
processing in multiple cognitive domains. Moreover, by establishing a link between neural similarity and psychological memory
strength, our findings suggest that there may be an isomorphism between psychological and neural representational spaces that can be

exploited to test cognitive theories at both the neural and behavioral levels.

Introduction

Familiarity is a ubiquitous part of everyday cognition. For exam-
ple, when encountering a familiar face on a subway, one may
pause to determine whether or not the person is a friend. Oper-
ationally, familiarity is thought to reflect the strength of memory
traces associated with particular items or categories and is a key
component of formal cognitive models in many research do-
mains (Gillund and Shiffrin, 1984; Hintzman, 1988; Nosofsky,
1988, 1991; Norman and O’Reilly, 2003).

The convergence of research on categorization and recogni-
tion memory suggests that there may be a shared neural substrate
for the processes underlying familiarity. For example, although
there is strong divergence in terms of the neural mechanisms that
support recognition memory and some types of category learning
(for review, see Ashby and Maddox, 2005; Seger and Miller,
2010), measures of memory strength in both domains have been
found to track mean activation in the medial temporal lobe
(MTL) (Ranganath et al., 2004; Daselaar et al., 2006; Seger et al.,
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2011; Davis et al., 2012a,b). The underlying mechanisms by
which neural activity gives rise to memory strength, however,
have not been elucidated, making it unclear whether this com-
mon activation reflects the same computational processes in both
domains.

Computational theories of long-term memory and categori-
zation can aid in relating activation within different brain regions
with cognitive mechanisms (Daw, 2011; Forstmann et al., 2011).
In formal models of long-term memory and categorization,
memory strength reflects how similar an item is to all other rep-
resentations stored in memory, which is often referred to as
“global similarity” (Gillund and Shiffrin, 1984; Hintzman, 1988;
Nosofsky, 1988, 1991). In long-term memory experiments,
global similarity between representations of items stored in
memory is thought to contribute to a number of behavioral mea-
sures, including recognition memory and recall (Raaijmakers
and Shiffrin, 1992; Clark and Gronlund, 1996). In categorization,
global similarity, along with the similarity an item to its own
category, is one of the pieces of information that is used to decide
how to classify an item (Nosofsky, 1988; Love et al., 2004). Al-
though classification is the primary role of global similarity in
categorization models, category members that have high global
similarity are also often associated with stronger recognition
memory (Sakamoto and Love, 2004, 2006), even when they have
not been previously encountered (Nosofsky, 1988).

Previous studies suggest that overall activation of the MTL
and mathematical global similarity measures are both associated
with behavioral measures of familiarity, which suggests that MTL
may be engaged in a global similarity computation that underlies
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Figure 1. A depiction of the neural global pattern similarity measure. Patterns of activation elicited for a given targetword  Jue to their automatic removal of the mean

(depicted by 1and 2) are compared with patterns elicited for all other words (depicted by 3, 4, and 5). Words whose patterns of
activation are highly similar to those of other items have higher aggregate matches, which is the basis for global pattern similarity.
The neural global pattern similarity measure relates to global similarity processes in categorization and long-term memory models.
Models predict that the higher the global similarity of an item with respect to representations of other items, the more strongly it

will be remembered.

familiarity. In the present study, we develop a mathematical mea-
sure of global neural similarity (Fig. 1) that is inspired by formal
memory and categorization models. In both categorization and
long-term memory tasks, we find that items associated with
stronger psychological memory strength elicit patterns of activa-
tion that are most similar to those of other studied items, consis-
tent with the hypothesis that the MTL engages a global similarity
process.

Materials and Methods

Here we detail our computational framework and current analysis, as
well as give a brief overview of fMRI acquisition and behavioral methods.
Detailed methods describing participants, experimental design, compu-
tational modeling, and behavioral and imaging data acquisition and pro-
cessing can be found in Davis et al. (2012a) for the categorization task and
Xue et al. (2010) for the long-term memory task.

Neural global similarity measure

Our multivoxel neural global pattern similarity measure (Fig. 1) is in-
spired by computational models of global similarity that measure how
similar an item is to all of the items in a task from psychological or
physical representations of stimuli (Nosofsky, 1988, 1991). Instead of
measuring similarities between psychological or physical representation
of stimuli, neural global pattern similarity measures similarities between
multivoxel activation patterns elicited for stimuli in the task. Stimuli that
are associated with high neural global pattern similarity (GPS) are central
in a neural activation space.

Formally, the global pattern similarity of an object i arises from the
similarity between the multivoxel neural activation pattern elicited for
item i (A;) and the activation patterns for each j item in the set (K) of all
items encountered in the task, as follows:

K
GPS(i) = >, sim(A; A), (1)
=
where the similarity between the patterns of items i and j is a function of
the distance between their elicited activation patterns, as follows:

sim(A;, A) = exp A A, (2)

The exponential function in Equation 2 institutes a similarity gradient
that scales the distances between stimuli such that, as the distance be-
tween the patterns for items i and j increases, the similarity between the
items decreases exponentially. Although there are a variety of functions

activation/engagement across voxels (Krieges-
korte et al., 2008). However, as with the simi-
larity gradient described above, a number of
choices are possible for the precise distance
metric (Lesot et al., 2009), and there has yet to
be a systematic investigation into which met-
rics are best for similarity-based neuroimaging
analysis (Davis and Poldrack, 2013a).

After neural global pattern similarity is computed for each stimulus,
the correlation can be estimated between the resulting item-wise global
similarities and item-wise behavioral and computational measures of
memory strength. In the long-term memory task (Xue et al., 2010), we
estimate the correlation between the neural global pattern similarity
measure and subjects’ subsequent recognition memory confidence. Rec-
ognition memory confidence is hypothesized to reflect the outcome of
global similarity processes operating on the psychological representa-
tions (P;) of stimuli in a task (Raaijmakers and Shiffrin, 1992; Clark and
Gronlund, 1996). Significant correlations between recognition memory
confidence and our neural global pattern similarity measure are thus
evidence for informational overlap between P; and A; in terms of which
stimuli are the most central within the two spaces. Given that we are
measuring global similarity during encoding in the long-term memory
task, the key assumption is that the activation patterns present at encod-
ing contain information about how the representations of stimuli will
overlap and influence later retrieval. The more stimuli elicit similar neu-
ral activation patterns, the more they are predicted to overlap in their
representations, and hence, according to global similarity models, the
more likely they are to be subsequently remembered.

In the categorization task (Davis et al., 2012a), we examined the rela-
tionship between the neural global pattern similarity measure and a psy-
chological measure of global similarity, termed “recognition strength,”
computed from a category learning model SUSTAIN (see Fig. 3B; for
details, see Davis et al., 2012a). For the present purposes, the key differ-
ence between the recognition strength measure and the neural global
pattern similarity measure of SUSTAIN is that, whereas neural global
pattern similarity is computed from similarity between multivoxel acti-
vation patterns A;, the recognition strength measure of SUSTAIN is com-
puted from psychological representations P;, which it learns from the
stimulus space in the task. Thus, significant correlations between neural
global pattern similarity and the recognition strength measure of SUSTAIN
are evidence that there is information overlap between P; and A; in terms of
which stimuli are most central within the two spaces.

fMRI acquisition

Long-term memory task. Imaging data were acquired on a 3.0 T Siemens
MRI scanner in the MRI Center at Beijing Normal University. Structural
images were acquired using a T1-weighted, three-dimensional, gradient
echo pulse sequence (TR = 2530 ms; TE = 3.39 ms; 6 = 7°, FOV = 256 X
256 mm; matrix = 192 X 256; slice thickness = 1.33 mm). One hundred
twenty-eight sagittal slices were acquired to provide high-resolution
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structural images of the whole brain. Func- A
tional images were acquired using a single-shot
T2*-weighted gradient echo EPI sequence
(TR = 2000 ms; TE = 30 ms; 6 = 90°; FOV =
200 X 200 mm; matrix = 64 X 64; slice thick-
ness = 4 mm). Thirty contiguous axial slices
parallel to the anterior commissure—posterior
commissure (AC-PC) line were obtained to
cover the whole cerebrum and partial
cerebellum.

Categorization task. Imaging data were ac-
quired on a 3.0 T GE Healthcare Signa MRI
scanner in the MRI Center at University of
Texas at Austin. Structural images were ac-
quired using a T2-weighted, flow-compen-

Category Structure

B Task

Hole A
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Hole B

sated spin-echo pulse sequence (TR = 3 s;
TE = 68 ms; 256 X 256 matrix; 1 X 1 mm
in-plane resolution) using 31 3-mm-thick
oblique axial slices (0.6 mm gap), ~20° off the
AC-PC line, oriented for the best whole-brain o5
coverage. Functional images were acquired us-
ing a multiecho GRAPPA parallel imaging EPI
sequence using the same slice prescription as

Does this one live in hole
AorB?

Incorrect, Even or Odd?

A This One Lives in Hole B

the structural images (TR = 2 s; TE = 30 ms; 2
shot; flip angle = 90°% 64 X 64 matrix; 3.75 X
3.75 mm in-plane resolution).

3.5 seconds

Behavioral methods

Long-term memory task. Male (n = 11) and fe-
male (n = 11) human subjects were scanned
during a semantic memory task in which 60
common Chinese words were presented three
times over the course of three scanning runs. On each trial, subjects were
presented with a 1 s fixation followed by the presentation of a word.
Subjects were asked to decide whether the word corresponded to a living
or nonliving object. Subjects had 3 s to key in their response. After re-
sponding, subjects completed 8 s of a self-paced visual orientation judg-
ment task in which they chose whether a 45° Gabor patch was tilting to
the left or right. Thirty minutes after the scan, subjects were asked to
perform two surprise memory tasks. First, subjects were asked to freely
recall words they remembered from the scanning session by writing them
down in any order. Next, subjects completed a recognition memory task
containing the original 60 words plus an additional 60 foils. Subjects were
asked to give their recognition confidence for each word on a scale of
1-6, ranging from definitely new to definitely old.

Similarity rating task. To supplement the primary results, we con-
ducted an additional similarity rating task. The goal of this task was to
provide a measure of the semantic relationships between words that
would allow us to test hypotheses about the representational content of
activation patterns that are used as inputs into the global neural similarity
measure. Semantic similarity between an item and representations stored
in memory is one of the features thought to feed into memory strength
contributions, according to global similarity models (Steyvers et al.,
2004).

For the similarity rating task, male (n = 4) and female (n = 4) native
Chinese speakers provided pairwise similarity ratings for each of the
words used in the long-term memory task. None of the subjects in the
similarity rating task were scanned in the long-term memory task. On
each trial, subjects were asked to rate the similarity between each pair of
words on a 1-7 scale. Subjects were instructed to base their similarity
ratings on word meaning (i.e., semantic similarity). Because of the high
number of similarity ratings (1770 unique pairs), the ratings were ran-
domly spread over nine sessions, which subjects completed over the
course of 2 h.

Categorization task. Male (n = 9) and female (n = 13) human subjects
completed a rule-plus-exception category learning task during fMRI
scanning. In this task, subjects learn by trial and error to classify sche-
matic beetles into categories (Hole A or Hole B beetles) based on their
features (Fig. 2 A, B; Table 1). Most beetles in the task are rule-following

0.5,2.5,0r 4.5 seconds 2 seconds 2,4, 0r 8 seconds

Figure 2. A, An example category structure. There are a total of eight beetles in the task. Most of the beetles can be easily
classified based on the following rule: for example, ifit has thick legs, it belongs in Hole A. However, each category also contains an
exception item (circled) that looks as if it should belong in the opposite category. B, An example trial sequence. On each trial,
subjects are presented with a beetle and are asked to supply the correct category label. They then receive feedback about the
correct category. An even/odd digit task separates the trials.

Table 1. Abstract category structure

Structure

2222°
1112
1121
1211
12227
2112
2121
2211
1111
1122
1212
1221
2222
2211
2121
2112
Each row represents a unique stimulus (i.e., beetle). The four values assigned to a stimulus denote the four stimulus
dimensions (e.g., legs, antennae) assigned to a beetle. Each numeric value (1 or 2) represents a specific feature
instantiation (e.g., red or green eyes). The first dimension represents the rule-relevant dimension. Most Hole A
beetles have a 1on the first dimension (e.g., thick legs), whereas most Hole B beetles have a 2 (e.g., thin legs). The
first stimulus in each of the columns is therefore an exception. The recognition test foils were never presented in the
categorization task and were saved for the surprise 2AFC recognition memory task. In each block of the 2AFC
recognition task, each Hole A and Hole B beetle was paired with each of the recognition test foils with the same value
on the rule dimension one time. For each subject, which physical dimension (eyes, tail, antennae, fangs, and legs)

corresponded to the abstract feature dimensions (1s and 2s) was randomized, and the fifth physical dimension was
held fixed.

“Exception item.

Category

Hole A beetles

Hole B beetles

Recognition test foils

items and can be accurately classified by using a simple rule based on a
single stimulus dimension (e.g., if the beetle has thick legs, it belongs in
Hole A). However, there are also exceptions to this rule that must be
represented distinctly from the rule-following items (e.g., a specific Hole
A beetle with thin legs). Before learning, subjects were informed which
stimulus dimension would be the rule dimension (Table 1, first digit of
the abstract representations) and given a hint to check this dimension on
each trial.
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Subjects were trained on the rule-plus-exception task for 30 blocks in
which each of the eight beetle stimuli were presented once in a random
order. The 30 blocks were divided equally among six scanning runs, each
of which lasted 8 min and 27 s. On each trial of the task (Fig. 2B), subjects
were presented with a stimulus for 3.5 s during which time they were
asked which one of the two categories (Hole A or Hole B) the stimulus
belonged to. The stimulus presentation time was followed by variable
fixation (0.5, 2.5, or 4.5 s) after which subjects were presented with feed-
back detailing the correct category assignment. Feedback was followed by
an active even/odd digit task baseline of 2, 4, or 8 s (Stark and Squire,
2001). Following the category learning task, subjects completed a self-
paced, two-alternative forced choice recognition memory task outside of
the scanner. On each trial of the recognition task, subjects were presented
with two beetles: one that was presented during the category learning
phase and a foil (Table 1) that was not presented during the category
learning phase. Subjects were asked to identify the old item presented
during the scanned rule-plus-exception task.

fMRI image preprocessing and analysis

FSL was used for image processing. Functional time series were skull
stripped, motion corrected, prewhitened, and high-pass filtered (cutoff:
category learning task = 100 Hz; long-term memory task = 60 Hz). No
spatial smoothing was performed on the functional data. First-level sta-
tistical maps were registered to the Montreal Neurological Institute
(MNI)-152 template using 7 df to align the functional image to the struc-
tural image, and 12 df to align the structural image to the MNI-152
template.

Long-term memory task. Multivoxel activation patterns for each stim-
ulus were computed in two ways. For the primary analysis, the voxelwise
GLM was used to compute a t-map giving the difference between baseline
activation and the activation elicited for each of the 60 unique stimuli in
the task. Stimulus presentation times for each unique stimulus were
modeled with a double-gamma hemodynamic response and its temporal
derivatives. Unconvolved motion parameters were included as nuisance
regressors. In a second model, which was designed to allow the compu-
tation of self-similarity across repetitions a stimulus, a 3-map was com-
puted for each repetition of each stimulus by using an LS-S procedure
(Mumford et al., 2012). The multivoxel response patterns for each stim-
ulus were registered to standard space to facilitate cross-run and cross-
subject comparisons.

Multivoxel activation patterns (-maps) for each of the unique stimuli
were used as the inputs into the neural global similarity measure. For
each stimulus, the similarity between its multivoxel pattern and all of the
other 60 items was computed and summed according to the neural global
pattern similarity measure. A correlation was then computed between
this 60-item global neural similarity vector and the behavioral memory
strength measures (recognition confidence and recall).

The spatial localization of the voxels within the #~-map used to compute
the neural global pattern similarity measure was selected using a search-
light algorithm (Kriegeskorte et al., 2006) with a 3 voxel radius. For each
searchlight, a correlation between the observed global neural similarity
and the behavioral memory measures was computed and stored at the
voxel corresponding to the center of the searchlight. The resulting
subject-level correlation maps were transformed using Fisher’s z test and
combined for second-level between-subjects analysis using a one-sample
t test.

The results presented in the body of the manuscript use a small-
volume anatomical cluster correction based on an MTL mask (Harvard-
Oxford), a cluster-forming threshold of p < 0.05 and a corrected extent
threshold of p < 0.05 using a permutation test. Although the results
presented in the article are significant when using the MTL-based ana-
tomical correction, there were no significant clusters observed at conven-
tional whole-brain corrected thresholds for the long-term memory task.

In addition to the primary analyses, we conducted a series of analyses
examining the relationship of the global pattern similarity to self-
similarity, recall, and recognition confidence within only the nonrecalled
items. In the recall analysis, we computed the correlation between a
dummy coded recall variable (1 = recalled; 0 = nonrecalled) and global
pattern similarity for each searchlight. The resulting statistical maps give
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the regions in which global pattern similarity was significantly higher for
recalled items. In a second, nonrecalled analysis, we restricted all of the
analyses to nonrecalled items such that only nonrecalled items were in-
cluded in the global pattern similarity computation, and the correlation
between global pattern similarity and recognition confidence included
only nonrecalled items. Finally, in the partial similarity analysis, we par-
tialled out the effect of mean self-similarity across repetitions on recog-
nition confidence before estimating the correlation between recognition
confidence and global pattern similarity, and vice versa. The resulting
statistical maps give the regions in which there is significant variance in
recognition confidence accounted for by mean self-similarity or global
pattern similarity after controlling for the other.

Finally, pairwise similarity analysis was conducted to test whether
semantic relationships between words were coded in the item-wise acti-
vation patterns. The semantic similarity between an item and represen-
tations stored in memory is one of the features thought to feed into
memory strength contributions, according to global similarity models
(Steyvers et al., 2004). In the pairwise similarity analysis, we examined
how the information contained in the rated pairwise similarities between
the words collected in the similarity rating task related to the pairwise
similarities between neural activation patterns elicited in the long-term
memory task that feed into the global pattern similarity measure. Instead
of using the average raw pairwise similarity ratings collected in the
similarity rating task, however, we computed a second-order similarity
measure in which each pairwise similarity rating was computed as the
correlation between the raw rating vectors of the two words. The logic
behind this measure is that words that are similar and dissimilar to the
same words will be more similar to each other than words that are similar
and dissimilar to other words. Conceptually related second-order simi-
larity measures are often used in computational linguistics (Landauer
and Dumais, 1997; Islam and Inkpen, 2006; second-order pointwise mu-
tual information; e.g., latent semantic analysis) and gene network analy-
sis (Ravasz et al., 2002). This second-order similarity measure reduced
within-subject noise in the ratings, thus resulting in enhanced reliability
of the mean pairwise similarities across subjects (intraclass correlation
for raw ratings = 0.65; intraclass correlation for second-order similari-
ties = 0.77). This analysis used the same searchlight procedure used in
the other analyses except that the correlation stored for each searchlight
was the correlation between the lower triangle of the pairwise word sim-
ilarity matrix and the lower triangle of the pairwise neural similarity
matrix (Kriegeskorte et al., 2008; see Fig. 6A).

Categorization task. Voxelwise GLM analysis was conducted in FEAT
to obtain a t-map for each of the eight stimuli in each of the six scanning
runs (Fig. 2A; Table 1). Stimulus presentation and feedback times were
modeled using a double-gamma hemodynamic response and its tempo-
ral derivatives. To account for between-item differences in time on task,
reaction time was controlled for by including a regressor in which the
durations of the hemodynamic response varied according to reaction
time. This regressor was orthogonalized with respect to stimulus presen-
tation regressors. Unconvolved motion parameters were included as nui-
sance variables.

A t-map giving voxelwise activation differences during stimulus pre-
sentation from baseline was computed for each stimulus-by-scanning
run combination, yielding 48 unique multivariate stimulus representa-
tions. These t-maps were registered to standard space to ensure align-
ment of anatomical regions between runs and used as neural stimulus
representations to compute the neural global pattern similarity measure
(see Egs. 1-3 above).

To evaluate how neural global pattern similarity changed over time for
each stimulus, the neural global pattern similarity measure was calcu-
lated for each stimulus by comparing it only to the other seven stimuli
within the same run. A correlation was then computed between the
neural global pattern similarity measure and a psychological global sim-
ilarity measure, recognition strength, generated from a computational
model, SUSTAIN (Love et al., 2004; but see Davis et al., 2012a). Model
derivation and parameter settings used to generate the recognition
strength predictions of SUSTAIN are the same as those detailed in Davis
et al. (2012a). Subject-level correlation maps obtained from the search-
light algorithm were transformed using Fisher’s z test, and combined for
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second-level between-subjects analysis. Subject-level maps were submit-
ted to a group ¢ test. The primary results use a small-volume anatomical
cluster correction based on an MTL mask (Harvard-Oxford), a cluster-
forming threshold of p < 0.05, and a corrected extent threshold of p <
0.05 using a permutation test. Whole-brain results use a p < 0.001
cluster-forming threshold and a p < 0.05 corrected extent threshold
using a permutation test.

In addition to the primary results, we included pairwise similarity
analyses to test which aspects of the psychological category structure were
coded in the activation patterns used as inputs into our neural global
pattern similarity measure. For this analysis, we used the anatomically
based MTL mask and calculated the pairwise similarities (i.e., correla-
tions) between the activation patterns elicited for each of the eight stimuli
in the final category learning run. Subjects’ final-run correlation matrices
were used to compute group-level  tests to test whether items were more
similar to members of their own or other categories. Additionally, the
average (across-subjects) pairwise similarity matrix was submitted to a
multidimensional scaling analysis using a Sammon mapping procedure
to visualize the information coded in the activation patterns.

Results

Application 1: long-term memory

Global similarity plays a prominent role in models of long-term
memory and is theorized to contribute to judgments of familiar-
ity and recognition confidence (Raaijmakers and Shiffrin, 1992;
Clark and Gronlund, 1996). According to formal long-term
memory models, recognition confidence and familiarity during
recognition memory tests derive from the extent to which stimuli
match the representations stored in memory during encoding.
Here we test whether the global pattern similarity between acti-
vation patterns elicited for words during incidental encoding is
associated with higher subsequent memory strength in a word
list-based long-term memory task (Xue et al., 2010, Experiment
3). We hypothesize that if representational overlap is driving
memory strength, activation patterns in the MTL should be more
globally similar for subsequently remembered items.

The previous results from the study by Xue et al. (2010) fo-
cused primarily on how encoding variability between repeated
presentations of stimuli related to long-term memory. The au-
thors found that pattern similarity across repetitions of words
during encoding (i.e., self-similarity) was significantly higher for
subsequently recalled words compared with forgotten words. In
the present analyses, we test whether words that are subsequently
remembered also exhibit higher global neural pattern similarity
to the activation patterns of other items elicited during encoding.
This prediction follows from formal long-term memory models,
which predict that memory strength is driven by the similarity
relationships between the representations of all stimuli encoded
in memory and not just a stimulus self-similarity. Additionally,
we examine whether this global similarity accounts for additional
variance in subsequent memory strength not accounted for by
the previous self-similarity findings. These analyses focus on the
relationship between neural similarity measures and subjects’
recognition confidence ratings, which provide a more graded
measure of memory strength than the recall measure used in
previous analyses by Xue et al. (2010).

Recognition confidence analysis

Our first hypothesis was that there would be a significant corre-
lation between global neural pattern similarity in the MTL and
subjects’ recognition confidence. To test this hypothesis, we com-
puted the correlation between the item-wise neural global pat-
tern similarity measure and subjects’ recognition confidence
using a searchlight procedure. In this procedure, voxels were it-
eratively selected from groupings of adjacent voxels across the
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A Long-term Memory Task
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Figure 3. A, Global pattern similarity values extracted from 6 mm spheres around subjects’
peak correlation values in the MTL in the recognition memory experiment. B, Predictions from
SUSTAIN for how recognition strength changes for the item types over the course of learning.
Exceptions are depicted in red, and rule-following items are depicted in green. C, Global pattern
similarity values extracted from 6 mm spheres around subjects’ peak correlation values in the
MTL in the categorization experiment. All global pattern similarity values are standardized
within subjects to neutralize individual differences in mean similarity and scale. Although not
independent from the statistical maps presented in Figure 4, these plots help to assess the effect
sizes and viability of the linearity assumptions (Friston, 2012).

brain and used to compute the neural global pattern similarity
measure. The correlation between the item-wise neural global
pattern similarity measure and subjects’ recognition confidence
was stored at the central voxel in each searchlight.

We found that there was a significant correlation between
subjects’ recognition confidence and global pattern similarity in
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overlap in significant voxels between B and C.

Table 2. MTL small-volume corrected clusters in which a significant correlation was
observed between the neural global pattern similarity measure and the
recognition strength measure of SUSTAIN in the categorization task, and
recognition confidence in the long-term memory task

Cluster

size Cluster MNI space Peak
Task Region Cluster (voxels) pvalue x y 7 (zscore)
(ategorization Anterior 1 952 0.002 —28 —2 —36 528
task parahippocampal
gyrus
Hippocampus 1 =26 —12 —20 247
Anterior 2 794 0.003 24 =22 =30 422
parahippocampal
gyrus
Posterior 2 14 =36 —4 3.09
parahippocampal
gyrus
Hippocampus 2 24 —22 —10 246
Long-term  Hippocampus 1 322 0.015 —34 —30 —14 548
memory  Hippocampus 1 =26 —40 —6 27
task

Peaks represent local maxima separated by at least 12 mm. Coordinates are in MNI space.

the MTL cortex and hippocampus (Figs. 3A, 4A; Table 2). When
searchlights were constrained to subregions within the MTL, cor-
relations between recognition confidence and global similarity
were marginal in left hippocampus (p = 0.06) and left parahip-
pocampal cortex (p = 0.078).

X=-22 Z=-16

Statistical results from our tests of the global pattern similarity measure for the long-term memory and categorization
tasks. The top row indicates the anatomical basis of the MTL mask used in our primary analyses. A-(, Statistical maps depict
regions in the MTLs in which the neural global pattern similarity measure tracks. A, Subsequent memory confidence in the
long-term memory task. B, The predicted recognition strength of SUSTAIN in the category learning task. The statistical maps depict
group-level ¢ statistics masked with clusters obtained from an anatomically based small-volume cluster correction. C, Depicts the
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These results support the hypothesis
that a global similarity process underlies
MTL computations in long-term memory
tasks. As theorized by computational
models of long-term memory, items that
elicited patterns of activation at encoding
that were the most globally similar were
patterns that were the most confidently
recognized. Importantly, however, these
confidently remembered items were more
globally similar in a neural activation
space—not just in terms of the psycholog-
ical representational spaces posited by
long-term memory models. These results
suggest that there is informational overlap
between the psychological representa-
tions of items and the neural activation
patterns elicited for these items in the
MTL, at least in terms of which items are
the most central or similar to other items.

Relating global and self-similarity

The present results are independent of
those presented by Xue et al. (2010) be-
cause, in the present study, global pattern
similarity is computed solely from between-
item similarities that are based on a single
activation pattern averaged over the three
repetitions. The original analysis by Xue et
al. (2010) focused only on similarity be-
tween repetitions of the same stimulus.
Although these results were not antici-
pated by any of the original analyses by
Xue et al. (2010), it is worthwhile to con-
sider the relationships between the self-
similarity findings and the present global
pattern similarity findings to assess how
global and self-similarity relate. In a second series of analyses, we
examined whether, statistically, the global pattern similarity mea-
sure is tapping into information not revealed in the original anal-
yses by Xue et al. (2010), which examined the relationship
between self-similarity and recall.

One question that we examined is how global similarity relates
to recall, the primary memory measure used in the original anal-
ysis by Xue et al. (2010). In terms of recall measures, recalled
words are likely to be those that are very strongly remembered
and may be associated with distinct pattern-separated represen-
tations that do not overlap with representations of other items
(O’Reilly and Norman, 2002). On the other hand, global similar-
ity is also thought to contribute to recall performance (Gillund
and Shiffrin, 1984). Consistent with the latter explanation, we
found that neural global pattern similarity was significantly
higher for recalled items (Fig. 5A), suggesting that overlap in
MTL activation patterns between items may also lead to success-
ful recall.

This finding of higher neural global pattern similarity for re-
called items raises an important question with respect to the
global similarity analyses presented in the previous section (Rec-
ognition confidence analysis): because recalled items tend to be
associated with high recognition memory confidence, is the cor-
relation between recognition confidence and neural global pat-
tern similarity driven by the difference between recalled and
nonrecalled items? To test this question, we examined whether
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the correlation between recognition con-
fidence and neural global pattern similar-
ity was significant within only the
nonrecalled items. We found significant
correlations between global neural pat-
tern similarity and recognition confi-
dence in the MTL (Fig. 5B). Collectively,
these results suggest that neural global
pattern similarity may underlie memory
strength computations for both recalled
items and memories with intermediate
strength (recognized but not recalled
items).

In addition to focusing on recall, Xue
et al. (2010) also restricted their neural
similarity analyses to self-similarity be-
tween repetitions of a stimulus. This raises
the question of whether neural global pat-
tern similarity is able to explain unique vari-
ability in memory strength that is not
accounted for by self-similarity, and vice
versa. After partialling out the effect of self-
similarity between repetitions of words, we
found that the correlation between neural
global pattern similarity within the MTL
and subsequent recognition memory con-
fidence remained significant (Fig. 5C).
Likewise, the correlation between self-
similarity in the MTL and recognition
confidence remained significant after par-
tialling out the effect of global pattern
similarity (Fig. 5D).

Altogether, these four results augment
our primary findings by showing that
both the pattern similarity of an item to
itself across repetitions and its pattern
similarity to other items are important for
recognition memory judgments. Further,
global similarity is associated with subse-
quent memory, even for the confidently
recognized recalled items. These findings
are consistent with predictions from mathematical models of hu-
man memory and suggest that the neural activation space under-
lying MTL function may obey the same principles as the
psychological spaces underlying these mathematical models.

It is notable that global pattern similarity in both the hip-
pocampus and MTL cortex relates to both recognition memory
confidence and recall. In many neurobiological theories of long-
term memory, the MTL cortex is thought to be critical for global
item-based familiarity processes, whereas the hippocampus is
thought to encode more contextual, relational, and associative
aspects of memory, akin to the construct of recollection, which is
critical for accurate recall (Brown and Aggleton, 2001; Diana et
al., 2007; Eichenbaum et al., 2007; but see Squire et al., 2007).
Previous neuroimaging results have supported this distinction by
showing that activation in the MTL cortex is often graded with
respect to subsequent memory performance, whereas activation
in the hippocampus tends to be all or none (Ranganath et al.,
2004). However, when we test more mechanistic conceptions of
memory strength via our global similarity measure, it appears
that both the hippocampus and MTL cortex activation patterns
contain enough overlap to support familiarity-based processing,
and that global similarity is also predictive of recall performance

Recall

Figure 5.

Y=-18
Recognition Confidence: Non-recalled items

Y=-28
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X=20

X=-22

Recognition confidence: Controlling for self-similarity

Z=-14

Z=-14

Statistical maps from supporting analyses in the long-term memory task. Statistical maps depict group-level ¢
statistics masked with clusters obtained from an MTL-based anatomical correction. A, MTL clusters in which the global pattern
similarity measure is significantly correlated with recall. B, MTL clusters in which global pattern similarity is significantly correlated
with recognition memory confidence after excluding recalled items. €, MTL clusters in which recognition confidence and global
pattern similarity are significantly correlated after partialling out self-similarity. D, MTL clusters in which recognition confidence
and self-similarity are significantly correlated after partialling out global pattern similarity. The statistical maps depict group-level
t statistics masked with clusters obtained from an anatomically based small-volume cluster correction.

and not just intermediate levels of recognition confidence. Thus,
our results may support theories that suggest the MTL as a whole
contributes to recollection and familiarity (Squire et al., 2007).
Importantly, however, specific anatomical claims regarding MTL
subregions must be tempered by the relatively low resolution of
the fMRI data in this study (Carr et al., 2010).

Pairwise similarity analysis

The above analyses suggest that words that are remembered more
strongly are more central in terms of the neural activation space
of the MTL. Because remembered items are also thought to be
more globally similar in a psychological memory space, accord-
ing to models of long-term memory, these results suggest that
activation patterns in the MTL and psychological memory repre-
sentations overlap at least in terms of which items are the most
central. However, an important question is whether these two
similarity spaces overlap in terms of other representational as-
pects of the words in the task. Indeed, in many global similarity
models, featural or semantic overlap between words is thought to
be a key contributor to global similarity and heightened memory
strength (Steyvers et al., 2004). Our analyses so far do not directly
answer whether semantic similarity is reflected in the similarity
relationships between neural activation patterns within the MTL
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Application 2: categorization task

The above analyses suggest that neural
global pattern similarity may drive recog-
nition confidence in long-term memory
tasks. Global similarity is also thought to
be a key computation underlying behav-
ior in categorization tasks, and thus test-
ing our neural global pattern similarity
measure in a categorization task is a criti-
cal test of its generality across domains. In
the second application, we test how the
global similarity between activation pat-
terns elicited for items in a categorization

Tk

task relates to a model-based measure of

s sim(5,1) sim(5,2) sim(5,3) sim(5,4)

Figure6. A, Adepiction of how the pairwise similarity analysis was conducted in the long-term memory task. A correlation was
computed between the lower triangle of the pairwise neural similarity matrix and the lower triangle of the pairwise semantic
similarity matrix gathered from the similarity rating task. B, Results of the pairwise similarity analysis. Statistical maps depict
clusters in which there was a significant correlation between the neural and semantic similarities between words.

Table 3. MTL small-volume corrected clusters in which a significant correlation was
observed between the lower triangle of the pairwise neural similarity matrix and
the pairwise semantic similarity matrix gathered in the similarity rating task

Cluster

size Cluster MNI space Peak
Region Cluster ~ (voxels) pvalue x y z (zscore)
Parahippocampal 1 151 0.007 —20 —34 —16 3.8

cortex

and thus do not answer whether semantic similarity contributes
to the correlation between neural global pattern similarity and
recognition confidence.

To test whether the semantic relationships between words are
reflected in the activation patterns of the MTL, we collected in-
dependent ratings of the semantic similarity between the words
used in our long-term memory task and tested how these rated
relationships relate to the pairwise neural similarities observed in
the task (Fig. 6A). Using the same searchlight procedure as used
for the primary analysis, we observed a cluster in parahippocam-
pal cortex in which there was a significant correlation between the
rated semantic similarity relationships and the pairwise neural
similarities between words (Fig. 6B; Table 3). These findings sug-
gest that semantic relationships between words may be coded in
the MTL and thus may contribute to the heightened neural global
pattern similarity for words, as anticipated by formal global sim-
ilarity models in long-term memory research.

psychological memory strength that is es-
timated from subjects’ behavior. This

model-based measure, termed recogni-
tion strength, is conceptually related to
our neural global similarity measure, but
instead of measuring how globally similar
an activation pattern is compared with
those elicited by other stimuli in a task, it
estimates how globally similar psycholog-
ical representations of items are in rela-
tion to category representations stored in
memory. In a previous analysis of the cur-
rent dataset (Davis et al., 2012a), signifi-
cant correlations were observed between
this recognition strength measure and
trial-by-trial activation in the MTL. In the
current analysis, instead of examining
trial-by-trial changes in the activation of
the MTL, we examine how the psycholog-
ical recognition strength measure relates
to block-by-block measures of global neu-
ral similarity for items in the task. This
allows us to test whether the MTL may be engaging a global
similarity process during categorization, as predicted by
similarity-based category learning models and our theory that the
MTL engages a global similarity process that supports both long-
term memory and categorization behavior.

The categorization task used to test our global neural similar-
ity measure is a rule-plus-exception task in which subjects learn
to assign schematic beetles to one of two categories using trial and
error. Most of the beetles can be classified using a rule based upon
a single dimension (e.g., if the beetle has thick legs, it belongs in
Hole A). However, each category also contains an exception item
that looks like it ought to belong in the opposing category based
on its feature value along the rule dimension. Previous findings
suggest that, over the course of learning, the exception items
become more prominent in memory. Although there remains
some debate about the processes and representations that lead to
this exception advantage (Palmeri and Nosofsky, 1995; Sakamoto
and Love, 2004; Sakamoto et al., 2004), models that are able to
explain the heightened memory strength for exception items pre-
dict that it occurs due to a recoding of the stimulus space such
that the unique features of exception items are emphasized in
memory so that they can be individuated, whereas the unique
features of rule-following items are de-emphasized in memory
because these features are not important for accurate categoriza-
tion (Palmeri and Nosofsky, 1995; Sakamoto and Love, 2004;
Sakamoto et al., 2004). This recoding causes the global similarity
for exception items to increase over the course of learning. Con-
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Figure 7. Whole-brain clusters in which there was a significant correlation between the
neural global pattern similarity measure and the predicted recognition strength of SUSTAIN in
the category learning task.

sistent with these predictions, in a previous analysis of the current
dataset, Davis et al. (2012a) found that subjects were more accu-
rate in recognizing exception items in a postlearning recognition
memory test. Moreover, Davis et al. (2012a) observed a signifi-
cant correlation between activation in the MTL during the cate-
gory learning task and a model-based psychological measure of
recognition strength, suggesting that a global similarity process
may underlie MTL activation during category learning.

The previously published activation-based analyses raise the
question of whether the same basic similarity processes are un-
derlying the activation of the MTL and the model-based recogni-
tion strength measure. The model-based mechanisms that
predict the greater recognition strength for exception items are
engaging a global similarity process; activation, however, only
tells how much a region is engaged for different item types. In the
present analysis, we attempt to draw a stronger parallel between
the model-based global similarity mechanisms that produce the
recognition strength measure and the mechanisms underlying
MTL function. To do this, we test whether neural global pattern
similarity between the MTL activation patterns elicited for differ-
ent items in the task tracks the model-based recognition strength
measure.

We found that there were significant correlations between
neural global pattern similarity (Eq. 1) and the model-based
global similarity measure in widespread regions of the MTL cor-
tex and hippocampus (Figs. 3C, 4B; Table 2; for whole-brain
results see Fig. 7; Table 4). When searchlights were additionally
constrained to anatomical subregions within the MTL, signifi-
cant clusters were observed bilaterally in hippocampus (right:
p = 0.033; left: p = 0.026), parahippocampal cortex (right: p =
0.04; left: p = 0.004), and perirhinal cortex (right: p = 0.004; left:
p = 0.003). These results suggest the MTL may perform a global
similarity computation during categorization behavior, as pre-
dicted by the model-based recognition strength measure.

The present neural global pattern similarity results could not
have been predicted to correlate in any specific way with the
model-based recognition strength measure based on previous
activation results alone. For example, intuitively, the activation-
based results may have just as easily predicted the opposite pattern of
results: because there are three times as many rule-following items as
exceptions, if items differed only with respect to their overall activa-
tion level in the MTL, it may have been the case that activation
patterns for rule-following items would be more globally similar
than exceptions due to their higher frequency.

Pairwise similarity analysis

Even though the present similarity results are not predictable
from previous activation-based results, as with the long-term
memory results, it is important to further assess what informa-
tion about the stimuli is present in the MTL activation patterns.

Davis et al. @ Global Pattern Similarity

Table 4. Whole-brain corrected clusters in which a significant correlation was
observed between the neural global pattern similarity and the recognition
strength measure of SUSTAIN in the categorization task

Cluster

size (luster MNI space Peak
Region (voxels) pvalue  x y 7 (zscore)
Anterior cingulate 780 <0.001 12 -1 30 859
Posterior cingulate 685 <0.001 4 —46 36 957
Putamen 470 <0.001 26 14 0 69
Lateral occipital cortex, superior 441 0.001 —28 —62 52 813

division
Inferior temporal gyrus 375 0.002 5 —52 -2 913
Insula 330 0.003 —22 26 2122
Frontal pole 282 0.004 6 5% —6 6.88
Inferior temporal gyrus 275 0.004 —5 —28 —18 7.6
Middle temporal gyrus 251 0.005 56 2 —28 891
Cuneal cortex 247 0006 —2 —88 14 748
Posterior cingulate 234 0.006 16 —44 4 857
Supracalcarine cortex 229 0.006 —22 —60 14 822
Anterior cingulate 225 0006 —26 —2 34 8.09
Frontal pole 188 0.009 8 48 —26 785
Lateral occipital cortex, inferior 185 0.009 40 —60 6 135
division

Anterior parahippocampal gyrus 177 001 —28 0 —32 6.69
Temporal fusiform 176 001 —24 —40 —20 116
Precentral gyrus 144 0.014 8 —26 56 774
Frontal pole 136 0.016 —46 38 —8 839
Inferior frontal gyrus 134 0.016 52 20 28 738
Temporal pole 15 0.022 —40 6 —40 853
Putamen 110 0.024 32 =10 —-12 733
Cerebellum 110 0.024 18 —62 —28 586
Thalamus 104 0027 —16 —24 6 774

Middle temporal gyrus 78 0.041 —48 —54 0 664

Frontal pole 77 0.043 8 58 30 57
Superior temporal gyrus 76 0.043 58 —18 2 612
Putamen 74 0.043 —18 6 —2 152
Angular gyrus 73 0.044 30 —48 22 619
Frontal pole 69 0.048 12 66 2 7.05
Temporal pole 69 0.048 46 16 —32 701

Cerebellum 67 005 —26 —54 —40 738

Peaks represent the maximum correlation within each cluster.

Here we use pairwise similarity analysis to examine how the bee-
tle space is represented in the MTL such that exception items are
more globally similar than rule-following items, even though
both item types are equally globally similar in terms of the phys-
ical/perceptual beetle space (i.e., feature values are evenly distrib-
uted across rule-following and exception items; Table 1). If the
MTL is recoding the space like the global-similarity models that
are able to learn rule-plus-exception tasks, it should de-
emphasize the unique features of rule-following items and differ-
entiate rule-following items primarily based upon which
category they belong in. Likewise, unique features of the excep-
tion items should be emphasized in memory so that these items
can be individuated.

One critical aspect of the category structure is that each item in
the task mirrors the non-rule-following dimension features of an
item in the opposing category (Table 1). This property of the
category structure allows us to test whether exceptions are more
differentiated in memory than rule-following items by testing
whether exceptions are more similar to their mirrored items (i.e.,
other exceptions) than rule-following items are to their mirrored
items (i.e., other rule-following items).

Consistent with the hypothesis that the exception item fea-
tures are more differentiated in memory, we found that exception
items from opposing categories were more similar than rule-
following items from opposing categories (4, = 3.37, p = 0.005).
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A Sammon map of pairwise similarities between MTL activation patterns elicited for the different item types at the end of the category learning task (sixth scanning run). Rules 1, 2, and

3 refer to different rule-following items used in the task (Table 1). Hole A beetles are depicted in Comic Sans, and Hole B beetles are depicted in Papyrus. The Sammon map projects the pairwise
similarities observed in the final run of the category learning task onto a two-dimensional space. The two dimensions on the x- and y-axes depict the two dimensions of the Sammon map. Distances
between items in the plot depict dissimilarities between their respective activation patterns in the reduced space.

As a second test of whether the activation patterns of the MTL con-
tained information about the category structure, we tested whether
rule-following items from the same category were more similar
than rule-following items from opposing categories. Consistent
with the hypothesis that the MTL contains information about the
category structure, we found that rule-following items were more
similar to the other rule-following members in their category
than to rule-following items in the opposing category () =
2.24, p = 0.04). These relationships between items were captured
in a two-dimensional multidimensional scaling (i.e., Sammon
mapping) of the pairwise similarities observed in the MTL at the
end of training (Fig. 8). Stress, a measure of how well the two-
dimensional solution accounted for the pairwise similarities be-
tween the items, was 0.07, indicating a good fit. In the Sammon
map, exceptions are most central and close to each other, whereas
rule-following items from opposing categories are clustered on
opposite sides of the space.

Together, these results suggest that the MTL activation pat-
terns present a recoding of the physical stimulus space into a
space in which exceptions are represented as the most central—
similar in some respects to both categories—whereas rule-
following items from opposing categories are represented as
dissimilar even when they otherwise share the same number of
common physical features with the opposing category as excep-
tions do. Importantly, these results suggest that the activation
patterns of the MTL contain important information about cate-

gory membership, and not just differences in activation between
exceptions and rule-following items, as demonstrated in the
study by Davis et al. (2012a).

Conjunction analysis across studies

We conducted a conjunction analysis to examine the degree to
which common regions were involved in global similarity pro-
cessing across the long-term memory and categorization studies.
The regions in which global pattern similarity in the MTL corre-
lated with memory strength showed considerable overlap be-
tween the two tasks (Fig. 4C). This overlap suggests that
computational processes supporting familiarity or memory
strength appear to share anatomical substrates in the MTL across
both task types.

Discussion

Similarity-based models from several cognitive domains posit a
central role for global similarity in computations of memory
strength. Despite this central role for global similarity in cognitive
theory, neurobiological studies on the neural basis of memory
strength have largely relied upon univariate activation measures
as surrogates for global similarity processes. Here we developed a
novel method for quantifying the global similarity of an item with
respect to patterns of activation elicited for all stimuli within a
task. Analysis of independent categorization and long-term
memory datasets revealed significant correlations between this
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neural global pattern similarity measure and psychological mea-
sures of memory strength thought to derive from global similar-
ity. These results suggest that similarity between activation
patterns in the brain can contain important information about
cognitive states and may allow the testing of cognitive theories at
a finer-grained level than previously thought.

Collectively, our results significantly extend the findings of
related categorization and long-term memory studies and previ-
ously published analyses of the current datasets (Xue et al., 2010;
Davis et al., 2012a). Foremost, the present results highlight a
mechanistic overlap between MTL-based categorization and
long-term memory processes that could not be determined based
on previous univariate analyses of MTL activation (Davis et al.,
2012a). According to mathematical categorization and long-term
memory models, both categorization and long-term memory en-
gage a global similarity process (Gillund and Shiffrin, 1984;
Hintzman, 1988; Nosofsky, 1988, 1991; Norman and O’Reilly,
2003), but the activation-based measures previously used do not
provide any information about the similarity relationships be-
tween items in terms of MTL processing. The present results
strengthen these theories by showing that the similarity relation-
ships between activation patterns elicited for items are related to
measures of memory strength in both task domains. Likewise,
our results strengthen global similarity theory in both domains by
revealing that both the similarity of an item to its own activation
patterns and its similarity to activation patterns of other items
contribute to memory strength.

Despite the strong formal relationships between categoriza-
tion and long-term memory models (Estes, 1996; Love and Gur-
eckis, 2007; Nosofsky et al., 2012), the idea that the same
mechanisms support similarity processing in both domains has
been controversial. Based on evidence that amnesic individuals
could learn some categorization tasks but could not recognize the
same stimuli in follow-up memory tasks, early neuropsycholog-
ical research suggested that the neural mechanisms for categori-
zation and memory diverged substantially (Knowlton and
Squire, 1993). More recent neuroimaging research has demon-
strated that the MTL plays a critical role in categorization and
recognition at various points (Poldrack et al., 2001; Seger et al.,
2011; Davis et al., 2012a,b), and for particular types of categori-
zation problems (Reber et al., 2003; for review, see Ashby and
Maddox, 2005; Zeithamova et al., 2008; Seger and Miller, 2010).
Furthermore, global similarity models that use the same repre-
sentations for categorization and recognition memory have been
successful at accounting for patterns of patient and imaging data
in both types of tasks (Nosofsky and Zaki, 1998; Love and Gur-
eckis, 2007; Nosofsky et al., 2012).

Our study is the first to use similarity-based analysis to directly
test whether overlap between activation patterns in the MTL
drives memory strength in both categorization and long-term
memory tasks. However, it is important to note several potential
points for consideration for future studies. First, rule-plus-
exception tasks may be unique in encouraging subjects to use
explicit MTL-based memory processes to memorize the excep-
tions, particularly when subjects are cued with the rule and told
beforehand that there will be exceptions, as we did in our exper-
iment. Thus, it will be important to test how the neural global
similarity measure relates to memory strength in a number of
different categorization tasks, particularly ones that may not de-
pend on the MTL (Reber et al., 2003; Nomura et al., 2007;
Zeithamova et al., 2008). Second, our results and theory do not
suggest that categorization and long-term memory will overlap in
all of their underlying psychological and neural mechanisms. In-
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deed, both categorization and long-term memory likely contain a
number of subprocesses beyond similarity and memory strength
computations that do not overlap (e.g., hypothesis testing, re-
sponse selection), and are not hypothesized to depend upon the
MTL (Poldrack and Foerde, 2008).

Our global pattern similarity measure shares relationships
with recent work examining how neural pattern similarities relate
to long-term memory. Recent studies have examined how pat-
tern similarities between repetitions of an item (Xue et al., 2010),
between an item and other members of its category (Kuhl et al.,
2012), or similarity to other categories (LaRocque et al., 2013)
relate to long-term memory. Contrastingly, our neural global
pattern similarity measure follows models of categorization and
memory in suggesting that the similarity relationships of an item
to all items combine additively to influence memory. However, this
does not mean that each of the different components that go into
global similarity (at the item level, within a category, and between
categories) will always be positively correlated with memory. For
example, in our rule-plus-exception task, the similarity of the excep-
tion to members of the opposing category is predicted to be a central
part of their high memory strength. In other contexts, the relation-
ship between similarity to opposing categories and memory strength
may be negative (e.g., when categories are defined by well separated
prototypes). Future studies will need to be developed to fully test the
consequences of this additive model in a variety of designs with well
defined representational structures.

One important question with respect to the present results is
how neural pattern similarity relates to similarity computations
in long-term memory and categorization models (Davis and Pol-
drack, 2013b). In formal long-term memory and categorization
models, familiarity or memory strength is modeled as arising
from global representational similarity (Gillund and Shiffrin,
1984; Hintzman, 1988; Nosofsky, 1988, 1991; Norman and
O’Reilly, 2003). Depending upon the specific model, this repre-
sentational similarity can include any information about the
overlap in featural, category-level, or other contextual or associa-
tive information between stimuli in a task. Multivoxel activation
patterns like those that make up our global similarity measure are
often interpreted in the broader literature as measures of neural
representation (Haxby et al., 2001; Eger et al., 2008; Kriegeskorte
etal., 2008; Weber et al., 2009; for review, see Davis and Poldrack,
2013b). If this representational interpretation is correct, the neu-
ral global pattern similarity measure is related directly to compu-
tations in formal models.

It is critical to note, however, that multivoxel activation pat-
terns likely contain a number of nonrepresentational signals that
can overlap between stimuli, such as information about engage-
ment of cognitive processes or anything else that differs between
the stimuli (Todd et al., 2013). For example, it is possible that
activation patterns contain voxels that are more reliably engaged
due to higher signal-to-noise ratio (SNR) for strongly remem-
bered items, and that this more reliable activation is driving high
neural global pattern similarity for strongly remembered items as
opposed to representational overlap per se. For example, analo-
gous to their action on visual processing (Boynton, 2005), atten-
tional processes may increase the reliability of a common
memory strength activation pattern for strongly remembered
items via decreases in SNR. Indeed, although our correlation-
based measure is insensitive to mean activation or average differ-
ences in variability between activation patterns for stimuli
(Kriegeskorte et al., 2008), recent findings suggest that such mod-
ulation of shared activation patterns will result in increased
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shared variability between items, which is not easily removed
(LaRocque et al., 2013; Davis et al., 2014).

Several pieces of evidence argue against the hypothesis that
engagement of memory strength processes is the only informa-
tion that is contained in the activation patterns of the MTL in the
present experiments. First, in the category learning task, rule-
following members were found to elicit activation patterns that
are similar to members of their own category and dissimilar to
members of the opposing category, even though rule-following
items from opposing categories would be associated with equiv-
alent memory strength or attentional modulation of SNR. Like-
wise, in the long-term memory task, information related to the
semantic relationships between words was found to be coded in
the activation patterns of the MTL, suggesting that the activation
patterns of the MTL contain information about the psychological
representations of stimuli and not just how strongly they are
remembered. Critically, however, our results do not definitively
indicate that cognitive models and the neural global pattern sim-
ilarity measure are taking into account identical representational
information. To draw stronger parallels between our global pat-
tern similarity measure and cognitive models, it will be important
for future research to develop techniques that are increasingly
able to directly measure the informational contents of activation
patterns.

In conclusion, formal cognitive models posit that global sim-
ilarity processes play a key role in cognitive processing in a variety
of domains. Using a novel neural global pattern similarity mea-
sure, we found that MTLs function in both categorization and
long-term memory tasks may operate via the same principles as
predicted by global similarity models. These results extend our
knowledge of the neural processes that give rise to memory and
suggest a remarkable consistency in terms of the neural mecha-
nisms that support cognition across categorization and long-
term memory domains.

Notes

Supplemental material for this article is available at https:/drive.google.
com/file/d/0Bz-7C2DKgeKoaTlkVkVfa2dpaDQ/edit?usp=sharing, consi-
sting of model equations and fit details for SUSTAIN. This material has not
been peer reviewed.
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