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A fundamental question of human episodic memory concerns the cognitive and
neural representations and processes that give rise to the neural signals of
memory. By integrating behavioral tests, formal computational models, and
neural measures of brain activity patterns, recent studies suggest that memory
signals not only depend on the neural processes and representations during
encoding and retrieval, but also on the interaction between encoding and retrieval
(e.g., transfer-appropriate processing), as well as on the interaction between the
tested events and all other events in the episodic memory space (e.g., global
matching). In addition, memory signals are also influenced by the compatibility of
the event with the existing long-term knowledge (e.g., schema matching). These
studies highlight the interactive nature of human episodic memory.

What Gives Rise to the Neural Signals of Episodic Memory?
Episodic memory is the ability to recall and recognize previously encountered objects, people, and
events, and to discriminate them from those that were notexperienced. A fundamental question of
human episodic memory concerns the cognitive and neural representations and processes that
give rise to the neural signals of episodic memory. Theoretical and computational models have
long characterized memory as a multidimensional collection of features which serve to discrimi-
nate one memory from another and to act as retrieval mechanisms for a target memory [1–4].
However, owing to methodological limitations, early neuroimaging studies primarily relied on
univariate brain activation (see Glossary) as neural measures of memory signals. Although
these studies have significantly advanced our understanding of the role of different brain regions in
various mnemonic processes, they were not enough to capture the aspects of memory content/
representation and their interactions that contribute to mnemonic behaviors.

By integrating feature models of memory with multiple voxel pattern analysis (MVPA) of
neuroimaging data, recent studies have started to examine in richer detail the ‘mental repre-
sentation’ of individual events. This has led to a major shift in research – from a focus on the
functional localization of memory processes to a focus on understanding the nature of
representations at different memory stages and their interactions (an early comprehensive
treatment of this topic is given in [5]). The field has progressed rapidly over the past 5 years, and
many exciting new findings have been reported. Thus, the current review aims to summarize
recent advances in this field.

In particular, the author examines what aspects of representations during encoding and
retrieval contribute to episodic memory and mnemonic decisions. The author then focuses
on the emerging evidence showing the interactions between representations, including the
interaction between the representation of an event during encoding and that during retrieval,
between the representation of a given event and that of other events in episodic memory
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Glossary
A–B/A–C learning paradigm: an
experimental paradigm in which cue
(A) is first paired with association B
(old association) and then with
association C (new association). This
paradigm is widely used to study
memory updating, interference,
integration, inference, and so on.
Complementary learning
systems: theoretical and
computational models that posit two
learning systems, namely a fast
learning system supported by the
hippocampus, and a slow learning
system supported by the neocortex.
Context maintenance and
retrieval (CMR): a more generalized
version of the temporal context
model to account for semantic,
source, and temporal organization
during memory search in free recall.
Default mode network: a large
network of highly connected brain
regions that show elevated activation
when a person is not involved in a
task.
Encoding–retrieval similarity
(ERS): a measure of similarity
between neural activation patterns
during encoding and during retrieval.
Episodic memory space: the set of
episodic representations within which
memory search and comparison are
performed in a memory decision
task.
Familiarity-based recognition: the
situation where one has only a sense
of experiencing a prior event without
remembering the details.
Global matching: the hypothesized
matching process between the
representation of one item with those
of all other items in episodic memory
space; the resulting product of this
process (i.e., global similarity) is used
for mnemonic decisions and
categorization.
Mnemonic decisions: decision
tasks in which one uses the retrieved
memory evidence to judge the order,
context, and veridicality of memories.
Multiple voxel pattern analysis
(MVPA): analytic methods that link
the distributed patterns of neural
activities with the underlying
processes or representations. Typical
methods include multivariate
decoding/classification and
representational similarity analysis.
Pattern reinstatement: the replay
or re-enactment of neural processes/

space, and between the representation of an event and pre-existing long-term knowledge
(Figure 1). This framework highlights the interactive nature of human episodic memory.

Predicting Memory from Encoding: The Fidelity of Representation
Memory formation involves the transformation of a given experience into a long-lasting trace.
Memory is therefore partially determined by the encoding processes. To explore how encoding
might influence memory, early studies used functional imaging techniques and the subse-
quent memory (SM) paradigm [6,7] to compare the neural activity of items that were either
subsequently remembered or forgotten (minutes to days after learning). The SM effect was
linked to greater activation in material-specific regions, frontoparietal attention regions, and
medial temporal lobe (MTL) binding and storage regions, and greater deactivation in the other
areas of the default mode network [8].

Although these studies provided a straightforward account regarding how processing strength/
depth and neural activation level are associated with memory strength, they did not specify how
these processes affect the quality of the memory representations and memory duration.
Therefore, more recent studies have used MVPA and the SM paradigm to directly examine
neural representations that underlie subsequent memory formation. They have revealed that
the neural pattern similarity across repeated presentations of the same stimulus (i.e., item-level
similarity) in several brain regions is positively associated with later recognition or recall of that
stimulus [9–15] (Figure 2). These regions included the frontoparietal cortex, sensory cortex, and
posterior cingulate cortex (PCC).
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Figure 1. Schematic Depiction of the Interactive Nature of Human Episodic Memory. Episodic memory not only
depends on the activity (Act.) and representation during encoding and retrieval but also on the interplay between encoding
and retrieval (transfer-appropriate processing), the interaction between a given item with all other items in episodic memory
space (global matching), as well as with pre-existing long-term knowledge (schema matching). Abbreviations: ER-nGPS,
encoding–retrieval neural global pattern similarity; ERS, encoding-retrieval similarity; GPS, global pattern similarity; LT,
long-term; PR, pattern reinstatement; PS, pattern similarity; SM, subsequent memory; TAP, transfer-appropriate
processing.

Trends in Cognitive Sciences, June 2018, Vol. 22, No. 6 545



This similarity may reflect the fidelity of item-level encoding and/or the reinstatement of
previously encoded representation. The reinstatement account is based on earlier behavioral
studies on study-phase retrieval (i.e., the reactivation of prior representations when restudying
the item again), which serves as a crucial mechanism for the memory practice effect [16,17].
Since the same materials are repeated multiple times, using fMRI techniques it was difficult to
disentangle the neural representations associated with the re-encoding of the same stimulus
from those associated with the reactivation of prior learning. However, with electroencepha-
lography (EEG) and magnetoencephalography (MEG) techniques that yield high temporal
resolution, this question can be addressed by examining the time-window in which the pattern
similarity supports subsequent memory. This technique relies on the assumption that an early
time-window reflects bottom-up sensory processing, whereas a late window reflects study-
phase retrieval of prior representations. A recent EEG study using this strategy found that the
pattern similarity that predicted subsequent memory occurred approximately 500 ms after
stimulus onset, consistent with the reinstatement hypothesis [14]. The study-phase retrieval
can be further addressed using the A–B/A–C learning paradigm. In this paradigm, item A is
initially paired with item B, and later paired with item C (B and C are usually from different
stimulus categories to aid interpretation), and either the old memory (i.e., A–B association) or
newer memory (i.e., A–C association) is probed in a later test. These studies found clear
evidence of B reactivation during later A–C learning, and this reactivation could help to resist the
forgetting of old memory [18,19] and also interfere with the acquisition of newer memory [20].

According to the fidelity account, greater similarity reflects more faithful and less noisy rep-
resentations of encoded materials, thus items with greater representational fidelity should show
greater similarity to items belonging to the same category than to different categories. Sup-
porting the fidelity account, it was found that, during learning, items subsequently judged as
remembered show greater category-level similarity (across items from the same vs different
category) than items subsequently forgotten [13]. Older adults show both reduced item-level
and category-level pattern similarity in the visual cortex, which underlies memory decline during
normal aging [21]. These studies converge to suggest that greater fidelity of item- or category-
level representations during learning are associated with better memory.

Further supporting the fidelity hypothesis, pattern similarity in the ventral visual cortex reportedly
correlates with both activation level [15] and pattern similarity [13] in the frontal and parietal
lobes, consistent with their role in enhancing the fidelity of cortical representation [22]. The
correlation with frontal activity was higher in old adults than in young adults, perhaps reflecting a
top-down compensatory process related to impaired visual representations in older adults [21].
Focused attention could also stabilize the representation in the hippocampus and improve later
memory [23]. In support of a causal role of the frontal cortex in enhancing cortical pattern
similarity, anodal stimulation of the prefrontal cortex was found to enhance the spatiotemporal
pattern similarity (STPS) and improve memory [14].

It should be noted that, although future studies will be necessary to disentangle the contribution
of the study-phase retrieve and item-specific encoding to the observed pattern similarity, they
could work together to increase the distinctiveness of memory representation. According to the
differentiation model of memory [24], when an early memory trace is retrieved, additional
encoding leads to the storage of additional information (such as the new context) in a single
episodic memory trace representing the same event. As the memory trace is updated, its
similarity to other, similar items decreases. This then results in more unique and faithful input to
the hippocampus and aids hippocampal pattern separation and context binding.

representations that occurred at the
encoding stage when the memory is
retrieved.
Recollection-based recognition:
the situation where one can vividly
remember the details of an event.
Schema: a pre-existing knowledge
structure that could be depicted as
an organized network of overlapping
representations.
Subsequent memory (SM)
paradigm: an experimental
paradigm that uses the cognitive and
neural processes and
representations during encoding to
predict later memory performance.
Temporal context model (TCM): a
formal computational model of free
recall, which was designed to explain
the phenomena of temporal
organization in memory search.
Transfer-appropriate processing
(TAP): the interactive nature of
encoding and retrieval, where the
effectiveness of encoding activity is
modulated by the cue type and
goals during retrieval.
Univariate brain activation: reflects
the activity level of individual voxels in
a given experimental condition as
revealed by voxel-wise analysis.
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The distinctiveness of the event representation can be further enhanced by hippocampal
pattern-separation processes by which similar representations are stored in a distinct and
orthogonalized fashion. This pattern separation is supported by the dentate gyrus (DG), whose
granule cells are able to orthogonalize overlapping/distributed representations from the ento-
rhinal cortex (ERC). This signal could then drive pattern separation in the CA3 subfield of the
hippocampus [25,26]. Supporting this view, several studies using MVPA found that the
hippocampus could disambiguate overlapping spatial and temporal contexts during successful
learning in navigation [27,28]. Furthermore, better subsequent memory was associated with
weaker within-category pattern similarity in the hippocampus (CA1, CA2/3/DG, and subiculum)
[29], suggesting that hippocampal pattern separation supports better memory.

To summarize, cumulative evidence using MVPA has suggested that the fidelity of represen-
tation during encoding could support enduring memory traces. Greater fidelity of representa-
tion, as indicated by greater category-level and item-level similarity, can improve the
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Figure 2. The Fidelity of Cortical Representation during Encoding Predicts Subsequent Memory. (A) The subsequent memory paradigm where each item
was repeatedly studied (e.g., 2–4 times) in a study session. (B) Schematic depiction of the analytic strategy to compare the neural pattern similarity between
subsequently remembered and forgotten items. (C) Subsequently remembered words showed greater item-level pattern similarity than forgotten words [12]. This
pattern similarity reflects item-specific representation, as the within-item similarity was greater than between-item similarity (within, within-item pattern similarity; cross,
pattern similarity between items belonging to the same mnemonic status). (D) Only subsequently remembered faces were associated with individual-specific face
representations in bilateral fusiform face area (FFA; left) and anterior inferior temporal lobe (aIT; right) [9]. Panels A–C are adapted, with permission, from [12]; panel D is
reproduced, with permission, from [9].
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distinctiveness of cortical input to MTL. Several mechanisms, including top-down attentional
control, study-phase pattern reinstatement and integration, and hippocampal pattern sep-
aration, may contribute to the distinctiveness of memory encoding. Future studies should apply
MVPA to further examine study-phase retrieval and the differentiation model, which would help
to answer the fundamental question regarding how repeated studies enhance memory.

Memory Signal during Retrieval: Pattern Reinstatement
Computational models have long suggested that retrieval involves the active re-enacting of
encoding operations [30]. At the neural level, this echoes the pattern reinstatement process
included in several neurally inspired models of episodic memory [31–33]. For example, the
Norman and O’Reilly model posits that encoding establishes a sparse and non-overlapping
representation in the hippocampus, particularly CA3 and DG [26]. Retrieval cues reactivate this
representation, which in turn leads to reinstatement of the cortical activation pattern during
encoding [32]. It has been further argued that the pattern-completion process, by which partial
representations are filled-in based on previously stored representations, is specific for cued
recall and recollection-based recognition, whereas familiarity-based recognition
depends on pattern matching between retrieval cues and stored representations [32,34].

Evidence for Item-Specific and Transformed Pattern Reinstatement
The reactivation perspective of memory retrieval suggests that retrieval should involve the
reinstatement of representations in the sensory cortex where the events were initially encoded,
and that memory strength should scale with the fidelity of the reinstated neural activation
pattern. Supporting this hypothesis, early univariate studies found that successful retrieval was
accompanied by reactivation of sensory/motor cortices involved in encoding [35,36]. However,
this overlapping activation could not specify the nature (e.g., item-specificity and fidelity) of
pattern reinstatement. Using MVPA classification, it has been shown that successful memory
retrieval is accompanied by the reinstatement of the categorical activation patterns that had
occurred during encoding [37–40]. More recently, using representational similarity analysis,
studies have revealed event-specific reinstatement, as indicated by greater within- than
between-event encoding–retrieval similarity (ERS) [41–45], providing strong evidence that
pattern reinstatement is associated with successful retrieval of specific events. Finally, the
fidelity of cortical reinstatement is predictive of retrieval decision times and decision accuracy
[46].

Several recent MVPA studies further examined item-specific reinstatement after removing the
perceptual similarity between encoding and retrieval (e.g., caused by using the same cue). One
study calculated the ERS between the activation pattern during the recall test (where only the
word cue was presented) and that during the recognition test (where only the associated
picture was presented) [47]. In another study, pattern reinstatement was measured during free
recall of movie scenes where no explicit cues were presented [48]. In a more recent study, each
picture was paired with two different cue words, allowing the researchers to examine ERS using
encoding–retrieval pairs that did not share the same cue word [49]. All these studies found item-
specific pattern reinstatement in the frontoparietal cortex (PFC), but not in the ventral visual
cortex (Figure 3). As the representation in the inferior parietal lobule (IPL) is identity- but not
view-specific [50], and reflects the progressive abstraction of conceptual knowledge from
perceptual experience [51], these studies suggest that the retrieved representation is
abstracted and the sensory details might not be faithfully reinstated. More importantly,
within-subject ERS was smaller than within-subject pattern similarity during both encoding
and retrieval [49], and cross-participant ERS was also smaller than cross-participant similarity
during retrieval [48], suggesting that the encoded representations had been transformed during
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retrieval in a systematic way (Figure 3B,C). A recent study further suggests that the transfor-
mation of memory representations during retrieval depends on memory consolidation, and that
there is a trade-off between reinstatement of event-specific representation and integration with
related memories [52].

Although pattern reinstatement is considered to be a specific neural marker of recollection,
cortical reinstatement has been demonstrated during both recollection- and familiarity-based
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Figure 3. Item-Specific and Transformed Pattern Reinstatement during Retrieval. (A) In the word–picture pairs learning and recall/recognition study [47],
category-level reactivation during recall test was measured by training a classifier (scene vs face) using data from study phase and applied to recall phase (50% chance).
Event-level reactivation was measured by calculating the similarity between pairs of recall–recognition trials corresponding to the same event, and test if the similarity
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watching and free recall study [48], the between-participant recall–recall similarity was greater than between-participants movie–recall similarity in the posterior medial
cortex (PMC), higher visual cortex, and anterior cingulate cortex (ACC), suggesting that the recalled representations had been transformed from that during movie
watching. FDR, false discovery rate. (C) In a more recent study [49], each picture was associated with two different word cues, allowing the examination of item-level
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representation during encoding and retrieval, respectively. Importantly, the degree of item-specific ERS (within-item minus between-item similarity) in the VVC was
smaller the item-specific similarity during encoding, and the ERS in the AG was smaller than item-specific similarity during retrieval, which further suggests that pattern
reinstatement during retrieval was transformed. Abbreviations: C+P+, same cue same picture; C�P+, different cue same picture; C�P�, different cue different picture;
L, left; R, right. Panel A is reproduced, with permission, from [47]; panel B is reproduced, with permission, from [48]; panel C is adapted, with permission, from [49].

Trends in Cognitive Sciences, June 2018, Vol. 22, No. 6 549



judgments [37], suggesting that the categorical reinstatement of sensory information alone is
not sufficient to differentiate recollection and familiarity. Further analysis revealed that the left
lateral temporal cortex, superior frontal gyrus, and inferior frontal gyrus showed common
pattern reinstatement for recollection and familiarity, but the posterior medial cortex showed
recollection-specific pattern reinstatement. Since recollection and familiarity in this study were
based on subjective reports that depend on criterion-based decision-making processes, it is
possible that participants might experience some recollection of those familiarity trials. Future
studies should examine this possibility with objective measure of familiarity and recollection. In
addition, the causal contribution of pattern reinstatement in different brain regions to recollec-
tion and familiarity warrants further investigations.

The Role of Posterior Parietal Cortex (PPC) in Memory Retrieval
One interesting finding in memory retrieval research is the consistent involvement of the PPC
(see [53–55] for reviews), although it has not been traditionally considered to be a memory
region. Human single-neuron recordings have also revealed that PPC neurons encode familiar
or novel stimuli, with the response being scaled with memory strength measured by confidence
[56]. Mechanistic accounts of the role of the PPC in memory have emphasized either general
processes such as attention for internal mnemonic representations [54] and accumulation of
mnemonic evidence [53], or specific processes such as representations of retrieved content in
an ‘output buffer’ [57] and binding information from other cortical inputs [58].

Recent MVPA studies suggest there might be finer functional dissociations in this region. In
particular, the posterior portion, namely the angular gyrus (AG), represents details of retrieved
information and shows content-specific episodic representation during retrieval [15,47,49,59].
By contrast, the anterior portion, namely the lateral intraparietal sulcus (IPS), may act as an
accumulator of mnemonic evidence by transforming and manipulating the retrieved information
according to the current task requirement [55,60]. Consistently, a recent iEEG study found that
the IPS (i.e., the dorsal supramarginal gyrus, SMG; and the ventral superior parietal lobule, SPL)
shows greater sustained high-frequency gamma power for old versus new items, which decays
only 200 ms before the motor response [61]. During long memory search, the AG shows
transient activities whereas the SMG exhibits sustained activation until a final decision is made
[60].

The Processes and Representations in the Hippocampus
One crucial question concerns the contribution of hippocampus and the adjacent MTL cortical
structures (e.g., the perirhinal cortex, PRC; and parahippocampal cortex, PHC) to memory
retrieval. According to one model, the PRC supports familiarity-based recognition, while the
hippocampus supports successful recollection [62]. Alternatively, it is posited that the hippo-
campus supports recollection and familiarity-based recognition with high confidence [63].
Meanwhile, other models focusing on the representational characteristics of the MTL posit
the respective roles for the PRC, PHC, and hippocampus in the representation of information
about items, contexts, and their binding [64,65].

Two lines of MVPA research might contribute to these debates. The first line concerns the role
of the hippocampus in cortical pattern reinstatement. Consistent with its role in memory
retrieval and pattern completion, several studies have found that the magnitude of hippocampal
activation during retrieval covaries with the fidelity/strength of pattern reinstatement. This was
true both in studies examining the reactivation of task and source information [18,46] and in
studies examining item-level encoding-retrieval similarity [40–42]. This representation-informed
activation analysis thus confirms the role of hippocampus in pattern completion. As very few

550 Trends in Cognitive Sciences, June 2018, Vol. 22, No. 6



studies have compared cortical reinstatement between recollection and familiarity, it remains
unknown whether the hippocampus contributes to pattern reinstatements specifically associ-
ated with recollection, or also with familiarity, if such reinstatement exists.

The second line of research focuses on the information representations in the hippocampus
and MTL. Using MVPA, cumulative evidence suggests the PRC is sensitive to faces, objects
[29,66], and semantic distance [67], whereas the PHC is sensitive to scenes [29,66,68]. Similar
to research with animals [69], human studies have found grid-cell like representation in the
entorhinal cortex (ERC) [70–72]. During retrieval, the PRC and ERC activation patterns distin-
guish familiar from novel faces [73] and objects [74], whereas the pattern in right PHC differ-
entiates buildings [73] and scenes [41,74].

By contrast, existing evidence suggests that the hippocampus does not represent object
information per se, but rather object–context binding, including maintaining temporal informa-
tion [75], constructing internal scene ‘models’ [76], and the integration of space and time [77].
The hippocampus shows no content-sensitivity to faces, scenes, or objects during encoding
[29,49,78], but carries temporal information about objects, and hence can differentiate the
same object that appears in different sequential contexts [79]. Another study found that
hippocampal pattern similarity was higher for stimulus pairs subsequently judged as temporally
close than those judged as far [80]. Using 7 Tesla high-field fMRI, only the activation pattern in
the subiculum subfield could discriminate scenes, but not faces or objects [81]. During retrieval,
although there is no evidence of familiarity signals for any object category in the hippocampus
[73,74], it carries recollection signals for all three types of stimuli [74]. Item-specific represen-
tations have also been found in CA1 and CA3/DG during cued retrieval when episodic details
are emphasized [49]. Finally, during navigation, strong spatiotemporal representation has been
consistently found in the hippocampus. For example, place-responsive cell activity was
reinstated during episodic memory retrieval [82]. Hippocampal activation patterns were found
to support prospective representation of future navigational goals [83].

Although fMRI studies have failed to reveal object coding in the hippocampus, single-neuron
recordings have found object/face-selective neurons in the hippocampus [84]. One possible
reason is that the hippocampal code features the representation of continuous dimensions of
experience, integrating elements of space, time, and object. This rich contextual representation
is proposed to be realized through neuronal ensembles, which can be captured with fMRI [77].
By contrast, hippocampal object representation is very sparse [84,85], making it hard to probe
with fMRI owing to the limited spatial resolution. Consistent with this view, iEEG studies have
found that hippocampal high-frequency activity (HFA) during retrieval contains item-specific
representations [44,86]. Using this approach, one study found that the hippocampal HFA was
modulated by the strength of both recollection and familiarity [87]. Since the strength of
recollection and familiarity was estimated by reaction time rather than by subjective confidence
or more objective measures, and no attempt was made to connect HFA patterns with memory
content, it is thus unclear whether the HFA encodes memory representations or decision-
related signals. Applying representational accounts to high-resolution fMRI and iEEG, future
studies will help to elucidate the hippocampal contribution to subjective experience of familiarity
and recollection.

Overall, supporting the computational models, existing studies find that the neural activation
patterns during retrieval reflect the reinstatement of encoding processes/representations,
which is supported by the hippocampal pattern-completion function. Recent evidence further
suggests that item-specific reinstatement during retrieval is more robust in higher-level cortical
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regions representing abstract information than in lower-level regions representing sensory
information. More importantly, emerging evidence suggests that, instead of a faithful replay of
the encoded trace, retrieval-induced pattern reinstatement might reflect a more constructive
process. Future studies should examine the coding scheme of the hippocampus, and examine
how its activities and representations contribute to pattern reinstatement during recollection
and perhaps familiarity.

Memory by Encoding–Retrieval Interaction: Transfer-Appropriate Processing
Memory performance is not only determined by the depth of processing but also by the
relationship between encoding and retrieval. From this perspective, whether or not a particular
encoding activity is effective depends on the goals and testing situations. Similarly, whether the
retrieval cue is effective or not depends on the processes engaged during encoding. The
transfer-appropriate processing (TAP) [88] and encoding specificity [3] hypotheses argue
that, to have successful memory, the encoding and retrieval processes should be substantially
similar. The TAP hypothesis gains support from a vast body of behavioral research [89]. In
particular, it has been suggested that better memory can be achieved when the context/
environment of study and test were matched [90]. This matching of modality not only increased
true memory but also reduced false memory [91].

The TAP predicts that stronger cue/context overlap should result in a greater overlap in neural
activation patterns between encoding and retrieval (see [92] for an early review). Early fMRI
studies that directly compared encoding and retrieval processes revealed substantial overlaps
(albeit also differences) in neural activation [93]. The subsequent memory effect for visually
presented words was modulated by the use of spoken words versus pictures as retrieval cues
during test [94]. Congruent cues were associated with better memory performance and greater
overlap with the neural activation during encoding [95].

To date, very few studies have used MVPA to test the TAP hypothesis. One study used fMRI to
scan the encoding and recognition of visual scenes, and MVPA was applied to evaluate the
neural similarity between individual scenes at encoding and retrieval. They found that the item-
level encoding–retrieval similarity is higher for subsequently remembered than forgotten items
[42]. Since ERS could reflect the cue/context overlap and/or the reactivation of encoded
representation, it is thus somehow difficult to disentangle them when the same stimulus is
presented at encoding and retrieval. Meanwhile, it is unclear whether ERS is the driving force or
the outcome of the TAP.

The retrieval cues not only come from environmental input but also can be generated internally
by retrieval of prior contextual states, which depends on the way the contexts were encoded.
This feature nicely demonstrates the intimate interactions between encoding and retrieval.
According to the context maintenance and retrieval (CMR) model of memory search [96],
which was developed from the early temporal context model (TCM) [97], the semantic,
temporal, and source contexts are encoded together with the items, and the retrieval of a given
item reinstates the associated context and drives contextual drift. This model has wide
implications for our understanding of the organizational prosperities in free recall. The associa-
tion principle and reactivation principle (termed ‘first principles’) have been recently incorpo-
rated into a neurally constrained model to account for free recall performance [98].

Supporting the context model, many studies have provided evidence for context coding, in
particular in the hippocampus [41,79,80], as well as in the prefrontal cortex [99], which was
reactivated during memory retrieval [82,100]. Using iEEG and scalp EEG and pattern analysis,
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one study examined the neural representations that supported the categorical organization
during free recall [101]. They found that category-specific patterns increased strength as
multiple same-category items were studied sequentially (i.e., category-specific neural integra-
tion). Interestingly, participants were more likely to rely on categorical organization in later recall
if they showed greater category-specific context integration during encoding. This study
provides very clear evidence to support the interplay between encoding and retrieval.

In summary, although the TAP hypothesis has been well supported by behavioral data, recent
neural pattern studies have offered a more detailed and mechanistic examination of this
important feature of human episodic memory. In particular, they find that the exact contexts
by which studied materials are organized determine the performance (in terms of accuracy,
speed, and order) in memory retrieval, which is mediated by the neural context coding and
reactivation. Future imaging studies should manipulate the cue/context overlap, and the
compatibility of context organization during encoding and retrieval, which should advance
our understanding of the neural implementations of context association, context reactivation,
and their interactions, and help to develop neurally realistic models.

Memory Signals Arise from Global Matching
The majority of studies have emphasized how memory for a given item is determined by its
encoding and/or retrieval processes, but they have not been able to address two related
questions – why is memory affected by the learning of other items, and why does false memory
occur? In the early memory strength model, generalization occurs by assuming that unstudied
items gain a strength that is proportional to the similarity to the presented items [102]. However,
the similarity among all non-identical stimuli is assumed to be constant and factors that
determine similarity are not specified. To address this issue, global matching models posit
that the memory strength of a given item derives from the matching (measured as similarity)
between its representation and the representations of all other studied items [103,104]. The
match value or memory strength is then subjected to a decision-making process (e.g., signal
detection model) to determine a response when performing a memory retrieval task. As is clear
here, the global matching models assume a single familiarity-based recognition mechanism for
retrieval [103].

The global matching models provide an algorithmic explanation for why recognition memory is
affected by the similarity of an item to other studied items. Using representational similarity
analysis (RSA) to calculate the neural global pattern similarity (Figure 4A), recent studies
examined and supported the hypothesis that higher neural global similarity during encoding
resulted in better recognition memory [29,105,106] (Figure 4C). Using EEG and RSA on
spatiotemporal features, a study also found that higher global spatiotemporal pattern similarity
was associated with better recognition memory of novel symbols [14]. Furthermore, words
describing living things showed higher neural global pattern similarity in the MTL than those
describing non-living things, and that this mediated the animacy effect of memory [107].

The global matching models also provide an account for false memory. According to the global
matching models, false memory occurs when there is a high level of similarity between the
unstudied item and stored memories because of overlap in item and/or context information. In
particular, the sum of many partial matches to memory traces could provide a strong overall
match, leading to the global similarity effect [103,104]. Recently, we tested the hypothesis that
the strengths of both true and false memories arise from the global similarity between neural
activation pattern of an item during retrieval and those of all studied items during encoding (i.e.,
the encoding–retrieval neural global pattern similarity, ER-nGPS) [59] (Figure 4A). Using the
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Deese–Roediger–McDermott (DRM) paradigm [108], we revealed two ER-nGPS signals that
carried distinct information and contributed differentially to true and false memories: whereas
ER-nGPS in parietal regions reflected semantic similarity, and was scaled with the recognition
strengths of both true and false memories, ER-nGPS in visual cortex contributed solely to true
memory (Figure 4B). Interestingly, the discrepancy between the two global matching signals
triggered a conflict-resolution mechanism implemented by the lateral prefrontal cortex.

How the global matching computation is implemented to generate the neural global similarity
signal remains unclear. During encoding, the temporal, source, and semantic contexts are
integrated. This episodic representation shares great similarity with the test items, resulting in
strong representation matching and familiarity for both true and false memory. Manipulation of
list length, list strength, word frequency, and stimuli grouping would affect global matching and
familiarity. During retrieval, this strong representation overlap may trigger pattern completion,
which further increases neural global pattern similarity. Notably, pattern completion might also
be involved in false memory as previous studies have found erroneous pattern completion [109]
and false neural pattern reinstatement [46,110]. This recall-like pattern-completion mechanism
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Figure 4. Global Matching and Memory Strength. (A) A depiction of the neural global pattern similarity between encoding and retrieval [59]. The Deese–Roediger–
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between encoding and retrieval (encoding–retrieval neural global pattern similarity, ER-nGPS) was calculated by averaging the neural activation pattern similarity
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has been suggested to be necessary in the global matching models, as the single familiarity-
based recognition mechanism could not account for the dissociated effect of the above
manipulations on item recognition and associative recognition performance [103]. Future
studies examining the involvement of global matching and hippocampal pattern completion
in both true and false recognition memory would help to address this important issue.

Clearly, the global matching models inspire a novel way to link neural activity with memory
strength. Unlike existing fMRI studies that consider the activation for each studied item as
mainly reflecting the ‘strength’ gained for that item, the global matching models posit that a test
item could gain a degree of ‘strength’ from each of the studied items, which is determined by
the similarity between the tested item and other studied items. Unlike the single global matching
signal in the current models, the imaging evidence suggest that temporal, perceptual, cate-
gorical, and semantic similarity may give rise to separate global matching signals, and con-
tribute differentially to mnemonic decisions depending on current goals. Finally, global similarity
might trigger both global matching (i.e., familiarity) and perhaps (erroneous) pattern completion
(i.e., recollection), and this needs to be examined further.

Pre-Existing Knowledge (Schemas) and Memory Signals
Whereas the TAP and global matching models emphasize the similarity between retrieval cue
and the content in the episodic memory space, many studies have also suggested that current
episodes may interact with long-term knowledge to determine memory strength. In his classic
1932 monograph on remembering [111], British psychologist Frederic Bartlett developed the
concept of schemas to refer to the pre-existing knowledge structures into which newly
acquired information can be incorporated. In practice, a schema is broadly defined as an
organized network of overlapping representations, including gist, concepts, categories, sta-
tistical regularities, semantics, and so on [112,113].

Schemas not only help the acquisition of new memories [114–116] but also facilitate consolidation
[117,118] and retrieval [119,120] (see [112,121] for review). The main characteristic of schema-
consistent learning is captured by new simulations [122] using a parallel distributed processing
approach to knowledge learning and representation [123] (Figure 5A). According to the com-
plementary learning systems theory (CLST) [33], cortical learning is slow to avoid catastrophic
interference of new knowledge that is inconsistent with prior knowledge. This is complemented by
a fast hippocampal learning system that can store arbitrary new knowledge. Memory acquired
through the hippocampus can be reactivated to guide behavior and to support interleaved training
of the neocortex, allowing new knowledge to be integrated gradually into neocortical knowledge
networks. The new simulation has found that the speed of cortical learning can be either slow or
fast depending on whether a given item is schema-consistent [122].

Recent evidence suggests that the hippocampus and prefrontal cortex (in particular the
ventromedial prefrontal cortex, VMPFC) support the assimilation of new episodic memory into
existing schemas [113]. In particular, whereas schema-inconsistent memory is encoded via the

Figure 5. Schema Matching and Episodic Memory. (A) The artificial neural network model introduced by Rumelhart [132], which was designed to simulate the
learning of structured knowledge about living things. Each oval represents a neuron-like processing unit. Connections between units are represented with arrows. It
should be noted that only a subset of the connections are shown as each unit in a layer connects to all units in the next layer to its right. This general framework can used
to simulate the learning of other structured knowledge. IS, ISA, CAN, and HAS are logical relations. (B) Cortical semantic representation predicts false memory. The
neural pattern similarity between the Deese–Roediger–McDermott (DRM) concept word and the four DRM list words (40 lists in total) were calculated and used to
predict the likelihood of false memory tested several weeks before. Searchlight analysis revealed that only the representational similarity in the temporal pole (TP) could
predict false memory (left). The right panel plots the group-averaged neural similarity for each of the 40 DRM lists against canonical false-memory likelihood. Panel A is
reproduced, with permission, from [123]; panel B is reproduced, with permission, from [131].
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hippocampus, schema-consistent memory is encoded via VMPFC–hippocampal interactions
[114,116,117]. Sensitivity to schema consistency was reduced in VMPFC damaged patients
[124] and by pharmacogenetic inhibition of the medial prefrontal cortex in rats [125]. By tracking
the neuronal responses during the whole learning periods, rodent research has examined the
role of the hippocampus in schema formation and updating [126]. One human study trained
subjects with paired associations over several months [119], whereas another study trained
subjects simple rules over 2 days [120]. Both studies found a shift of brain substrate from the
hippocampus to VMPFC after a 24 h delay. Given the complex nature of schemas, these
studies did not characterize the neural representation of schemas. As a result, schema
matching was not directly measured at the representation level (i.e., no measures of similarity
between the representations of new memory and those of existing long-term memories were
employed).

To overcome this challenge, several studies have used MVPA fMRI to examine memory
acquisition where a new memory shares overlapping features with old memories. They found
that the VMPFC–hippocampal interaction is important for the integration [52] and novel
inference [127] of schema-consistent memory. Guided by computational models, recent
studies have started to provide a detailed description of neural representations of long-term
knowledge such as objects [128], words [129], and semantics [130] in the brain. These studies
provide a foundation to examine the interaction between new event and existing knowledge.
Using this approach on a smaller set of words, one human study found that the semantic
representation in the temporal pole, the so-called semantic hub, determined the likelihood of
false memory in an independent memory test administered several weeks before or even on
independent samples [131] (Figure 5B). Moreover, the within-subject neural-behavioral corre-
lation was significantly stronger than the between-subject correlation, suggesting that each
subject had a partially unique semantic representation that influenced false memory. This
innovative study provides a powerful approach to examine how the structure/representation of
existing semantic knowledge or schemas affects the formation of new episodic memories.

Both global matching and schema matching are operated on the similarity of representations,
but they emphasize different aspects of representations. Whereas global matching emphasizes
the impact of episodic context, schema matching is mainly determined by long-term, context-
free, and structured knowledge (e.g., semantic). Meanwhile, memory gained from global
matching and schema matching likely experiences different post-learning consolidation pro-
cesses. It would be a fruitful direction for future studies to integrate computational learning
models (e.g., CLST) and neural representational analysis to track the dynamic development of
schemas, and to examine how schemas affect the acquisition, consolidation, and retrieval of
new knowledge.

Concluding Remarks
The representational perspective of episodic memory has helped to achieve a deeper and
synergistic integration of behavioral observations, formal computational models, and neuro-
imaging data. These studies have revealed multiple distinct neural processes and representa-
tions that give rise to episodic memory. In particular, memory strength for a given event not only
depends on the neural activity associated with the same event during encoding and retrieval but
is also affected by the interaction between encoding and retrieval, between the event and other
events that co-occurred, and between the new event and pre-existing knowledge. Although
these mechanisms (reviewed in separate sections previously) have so far been studied
separately, they should act simultaneously and interactively to determine the characteristics
of human episodic memory. Future efforts to track the formation of episodic memory and to

Outstanding Questions
How do different neural signals (e.g.,
categorical vs event-specific) from dif-
ferent brain regions (e.g., sensory cortex
vs multimodality region vs hippocam-
pus) converge and compete to support
episodic memory decisions? How do
their contributions vary according to
task requirement and response strate-
gies? Answering these questions
requires a detailed characterization of
the distributed and multifaceted nature
of memory representations and deci-
sion-making processes.

Do these neural signals play a causal
role in supporting memory experiences,
including true versus false memory, rec-
ollection versus familiarity? As neuroim-
aging studies are correlational in nature,
experimental manipulations that can
introduce the gain and loss of particular
memory functions (e.g., lesion; trans-
cranial magnetic stimulation, TMS;
transcranial direct-current stimulation,
tDCS) would be very valuable.

What neural signals can reliably disso-
ciate recollection and familiarity, as well
as true versus false memory? Are there
dissociations between objective neural
memory signals and subjective mem-
ory experiences? Although addressing
these questions has been the focus of
many existing studies, more reliable
neural markers are yet to be
discovered.

How do the neural representations and
processes underlying episodic mem-
ory change as a result of brain devel-
opment (i.e., maturation and
deterioration) and learning (e.g.,
knowledge accumulation)?

How do memory representations
transform with repeated learning,
active retrieval, and spontaneous reac-
tivation? What are the neural mecha-
nisms that underlie the coevolution of
episodic memory and semantic mem-
ory? Addressing these questions will
advance our understanding of the
dynamic nature of human memory.

What are the neural mechanisms
underlying the accommodation and
assimilation of schemas, two crucial
processes in human–environment
interaction throughout development?
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examine these complex interactions could help to fundamentally link episodic memory with
various processes such as perception, attention, working memory, and the formation of
semantic memory.

While still in its early stage, this line of research has clearly manifested the power of examining
distributed neural activation patterns, as guided by formal computational models, in episodic
memory research. These studies have not only broadened the questions that can be addressed
with human neuroimaging studies but also achieved a much more detailed mechanistic
understanding of the representations and processes underlying episodic memory. Certainly,
there are many intriguing questions that remain to be answered (see Outstanding Questions). In
addition to further elucidating the interactive and dynamic nature of human episodic memory,
future studies should address the causal role of these neural representations in supporting the
sophisticated and subjective experiences of episodic memory, such as recollection versus
familiarity, and true versus false memory.
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