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N E U R O S C I E N C E

Higher-dimensional neural representations predict 
better episodic memory
Jintao Sheng, Liang Zhang, Chuqi Liu, Jing Liu, Junjiao Feng, Yu Zhou, Huinan Hu, Gui Xue*

Episodic memory enables humans to encode and later vividly retrieve information about our rich experiences, yet 
the neural representations that support this mental capacity are poorly understood. Using a large fMRI dataset 
(n = 468) of face-name associative memory tasks and principal component analysis to examine neural representa-
tional dimensionality (RD), we found that the human brain maintained a high-dimensional representation of faces 
through hierarchical representation within and beyond the face-selective regions. Critically, greater RD was asso-
ciated with better subsequent memory performance both within and across participants, and this association was 
specific to episodic memory but not general cognitive abilities. Furthermore, the frontoparietal activities could 
suppress the shared low-dimensional fluctuations and reduce the correlations of local neural responses, resulting 
in greater RD. RD was not associated with the degree of item-specific pattern similarity, and it made complemen-
tary contributions to episodic memory. These results provide a mechanistic understanding of the role of RD in 
supporting accurate episodic memory.

INTRODUCTION
One fundamental question in cognitive neuroscience is understand-
ing the neural representations that support human episodic memory 
(1). Existing studies suggest that both the content (i.e., what is en-
coded) and the geometry (i.e., the structured relations across input 
conditions) could substantially affect cognition (2). In particular, the 
dimensionality of neural representations, which refers to the mini-
mum number of dimensions needed to account for the variance in 
neural population activity across input conditions (3), has been im-
plicated in various cognitive functions, including visual perception 
(4), reinforcement learning (5), concept learning (6), adaptation (7), 
decision-making (8, 9), and cognitive control (3). However, its role 
in episodic memory is still unknown.

Both high- and low-dimensional representations have specific 
characteristics that may benefit episodic memory. In particular, a 
high-dimensional representation will separate even similar inputs 
into orthogonal activity patterns, which is achieved by eliminating 
correlations in sensory inputs. These codes are sparse, can efficiently 
use the limited numbers of neurons in a brain region, and enable 
complex features to be read out by simple downstream networks. 
Recent studies have shown an increase in representational dimen-
sionality (RD) with reinforcement learning of object value (10), and 
quick learners showed greater RD than slow learners (5). A low- 
dimensional representation, by contrast, will encode a diverse range 
of inputs into a small set of common orthogonal activity patterns. 
Neural codes with low dimensions are correlated and redundant, 
enabling robust representation in the presence of neural noise. It 
could also increase the smoothness or generalization of representa-
tion, resulting in similar neural responses to similar images. A 
recent study has shown that the neural representations of complex 
inputs are fundamentally constrained by their smoothness (4). It 
thus remains an open question as to how the neural representations 
are balanced in terms of efficiency and robustness to support good 
episodic memory.

Another question concerns the mechanisms underlying the as-
sociation between RD and episodic memory. A large body of research 
has revealed that the population of neurons wax and wane as a group, 
demonstrating low-dimensional variance (11–14). Attentional pro-
cesses could exert top-down control (15, 16), which could reduce 
the correlation of neural responses (12, 14, 17–19) and thus could 
potentially increase the dimensionality. Extant modeling work 
suggests that this top-down attentional effect could be achieved by 
suppressing the low-dimensional shared neural variability (12), yet 
evidence from human neuroimaging studies is still absent. Further-
more, these top-down processes have previously been shown to 
enhance the fidelity (i.e., item-level specificity) of neural representa-
tions (20, 21), which is associated with better episodic memory (22, 23). 
Thus, the primary goal of the current study is to examine the 
relationship between top-down processes, low-dimensional neural 
variability, and RD in the human brain and how they are related to 
the fidelity of neural representations and memory performance.

To achieve a mechanistic understanding of the role of RD in 
episodic memory, we collected functional magnetic resonance 
imaging (fMRI) data on a relatively large group of participants per-
forming a face-name associative memory task, which requires the 
participants to precisely discriminate each novel face and remember 
its association with an arbitrary name. We used principal compo-
nent analysis (PCA) to estimate the representative dimensionality 
within and beyond the face-selective regions (FSRs) and further 
linked them to memory performance both within and across partic-
ipants. Our results revealed a critical neural mechanism through 
which RD could affect episodic memory performance.

RESULTS
Behavioral results
A face-name associative memory task was used in the current study. In 
this task, participants were asked to remember 30 unfamiliar face-name 
pairs. To aid their memory, they were asked to make a subjective judg-
ment on the fitness of name-face association. Each face-name associa-
tion was studied twice within one scanning run, with an interrepetition 
interval ranging from 8 to 17 trials. We used a slow event-related design 
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(12 s for each trial) to better estimate the single-trial blood oxygen 
level dependent (BOLD) responses (Fig. 1A). To prevent participants 
from further processing the face-name pairs, they were asked to make 
self-paced perceptual orientation judgments for 7.5 s before the next 
trial started. The average response time was 0.576 ± 0.240 s, and the 
mean accuracy was 0.856 ± 0.137 for the orientation task, suggesting 
that the participants were paying attention to the task.

After 24 min of working memory and decision-making tasks in 
the scanner, participants completed a recognition task where they 
were asked to select the correct given name for a presented face from 
three candidates or choose “new” if it was a new face. The 30 old 
faces and 20 new faces were included in the recognition test. Two 
behavioral measures were generated from this task, i.e., associative 
recognition and item recognition. Associative recognition refers to 
the correct recognition of face-name associations, which was quanti-
fied as the accuracy for both the old (i.e., choosing the correct name) 
and new faces (i.e., correct rejection). In contrast, item recognition 
refers to the correct recognition of old faces regardless of the correct 
names (hit), which was quantified as the d′ score: Z (hit rate) − Z 
(false alarm rate, i.e., incorrect recognition of new faces as old). 
The accuracy of associative recognition (ACC_association) was 

0.603 ± 0.147 (kurtosis = −0.127, skewness = −0.269; Fig. 1B, left), 
which was significantly above the chance level (25%, P < 0.001). The 
d′ of item recognition (d′_item) was 2.048 ± 0.823 (kurtosis = −0.070, 
skewness = −0.299; Fig. 1B, right), which was significantly correlated 
with ACC_association (R = 0.850, P < 0.001; Fig. 1C).

High-dimensional facial representations in the human brain
We examined the neural RD in FSR (Fig. 2B) and the hippocampus 
(HIP; Fig. 2C) using PCA. Existing studies have proposed two RD 
indices, including the number of PCs required to explain 90% of the 
variance (RDvar) (6) and the number of eigenvalues greater than 
1 (RDeig) (24). Whereas RDvar could be potentially affected by very 
small eigenvalues that are likely to be noise, RDeig is insensitive to 
the differences in the cumulative variance explained by eigenvalues 
greater than 1. Here, we propose an alternative index, namely, effec-
tive RD (RDeff), which is defined as RDeig divided by the cumulative 
variance explained by eigenvalues larger than 1 (Fig. 2A, see Mate-
rials and Methods). This is based on the assumption that the un-
explained variance is not all noise. For participants with the same 
RDeig, those with more unexplained variance should have greater 
effective dimensions. RDeff jointly considers the major eigenvalues 

Fig. 1. Experimental paradigm and distribution of memory performance. (A) A slow event-related design (12 s for each trial) was used to improve the accuracy in the 
estimation of single-trial responses. Each trial started with 0.5-s fixation, followed by the presentation of a picture for 2.5 s. Then, the frame of the picture turned red, which 
informed the participants to indicate whether the face “fitted” the name within 1.5 s. To prevent further encoding of the picture, a series of Gabor images tilting 45° to the 
left or the right was presented on the screen during the 7.5-s intertrial interval, and participants were asked to judge the direction of the Gabor images as quickly and 
accurately as possible. During the recognition memory test, participants were asked to indicate the corresponding correct name if the face was old; otherwise, they 
pressed the new button within 4 s. Please note that the facial images were censored here to protect privacy. They were not censored in the experiment. (B) Distribution 
of the accuracy of associative recognition (ACC_association) and d′ of item recognition (d′_item). The dashed lines represent the group mean (N = 468). (C) Correlation 
between ACC_association and d′_item.
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(RDeig) and the explained cumulative variance (RDvar) and is less 
affected by the number of eigenvalues with very small values. Thus, 
it could provide a good measure of regional and individual differ-
ences in representational dimensions, although the absolute number 
is less meaningful.

We found that RDeig and RDeff in the gray matter were highly 
correlated across participants (r = 0.96), and they were moderately 
correlated with RDvar (r = 0.56 and 0.68 for RDeig and RDeff, respec-
tively; fig. S1A). In addition, RDeig and RDeff were highly reliable 
across two repetitions, with intraclass correlation coefficients (ICCs) 
of 0.80 and 0.81, respectively. A relatively smaller ICC was observed 
for RDvar (i.e., 0.42; fig. S1B). Separately, for each region of interest 
(ROI), RDeff was more reliable across two repetitions compared to 
RDeig and RDvar (Supplementary Results). Because RDeff showed the 
most fine-grained distribution across participants (fig. S1) and the 
highest reliability, we then used RDeff as the main measure of re-
gional and individual differences in RD. The results based on RDeig 
and RDvar are included in the Supplementary Results. Meanwhile, 
RDeig was used to provide a conservative estimation of the dimen-
sionality of neural representations.

Using the RDeig index to estimate the dimensionality, we found 
that FSR and HIP contained high-dimensional face representations 

(FSR: mean ± SD = 13.24 ± 1.32; HIP: mean ± SD = 13.04 ± 0.82; 
Fig. 2D). The dimension is much higher than the dimensionality 
estimated from the computational model (i.e., OpenFace; see Mate-
rials and Methods) that was required to identify different faces 
(i.e., 4; left dashed line in Fig. 2D) but was significantly lower than 
the maximal dimensions, i.e., 29 (Fig. 2D, right dashed line). Notice-
ably, the maximum possible dimensionality was 29 (30 − 1 in this 
study) because each voxel (i.e., matrix row) was mean-centered to 
eliminate the effects of activation level. Together, these results 
suggest that the brain maintains a high-dimensional yet robust rep-
resentation of faces.

Dimensionality reflects hierarchical face representations
Previous studies have suggested that FSR (Fig. 2B) encodes faces 
hierarchically. For example, the occipital face area (OFA) engages in 
the early perception of facial features, the fusiform face area (FFA) 
analyzes the invariant aspects of faces that underlie recognition of 
individuals, and the superior temporal sulcus (STS) processes the 
changeable aspects of faces such as expressions and the direction 
of eye gaze (25). According to this hierarchical representation, one 
could hypothesize that the dimensionality of face representations in 
the higher-level face areas, such as FFA and STS, would be higher 

Fig. 2. Schematic depiction of the RD analysis, the regions of interest, and the distribution of RDeig. (A) PCA was performed on neural activation patterns (represented 
by m voxels) evoked for each of n trials. RDeig (i.e., k1) is the number of principal components (PCs) with an eigenvalue greater than 1, and RDvar (i.e., k2) is the number of 
PCs required to explain 90% of the variance. RDeff was obtained by dividing RDeig by the cumulative variance (V) explained by the PCs with an eigenvalue greater than 1. 
(B) FSRs were defined according to Zhen et al. (48). Because the left anterior FFA contains a very small number of voxels (i.e., n = 182), the posterior and anterior FFA were 
merged and named FFA. (C) The bilateral hippocampus (HIP) was defined according to the Harvard-Oxford probabilistic (25%) atlas. (D) Population distribution of RDeig 
in FSR and HIP. The left, middle, and right dashed lines indicate the dimension of the facial images based on the OpenFace model (i.e., 4), the mean observed RDeig in FSR 
(i.e., 13.24) and HIP (i.e., 13.04) across participants, and the maximum possible dimensionality (i.e., 29), respectively. OFA, occipital face area; FFA, fusiform face area; pcSTS, 
posterior continuation of the superior temporal sulcus (STS); pSTS, posterior STS; aSTS, anterior STS.
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than that in the primary brain areas, such as OFA. To ameliorate 
the effects of spatial autocorrelation of the BOLD signal and the size 
of brain regions, we used a searchlight method to estimate RD. That 
is, we calculated the dimensionalities in each cubic containing 
125 voxels across the whole brain (Fig. 3A). It is evident that along the 
ventral visual pathway, the dimensionality increased from posterior 
to anterior regions.

Focusing on each face-selective subregion and HIP, we found 
that OFA has the lowest dimensionality, whereas HIP has the highest 
dimensionality (Fig. 3B). Moreover, compared with the posterior 
FSR, the anterior regions show higher representation dimensionality, 
and this effect was found in both the face area and STS (Fig. 3B). 
The dimensionality of the right pcSTS (posterior continuation of 
STS) and pSTS (posterior STS) was significantly higher than that of 
the left homolog (Pcorrected < 0.001; Fig. 3B), but that in the right HIP 
was significantly lower than that in the left HIP (Pcorrected < 0.001).

Higher RD was associated with better memory
Having characterized RD within and beyond FSR, we then moved 
on to examine the core hypothesis of the current study: Is higher 
dimensionality associated with better episodic memory? We per-
formed two analyses to address this question, one on individual dif-
ferences and the other on the subsequent memory effect (SME).

In light of the significant and stable individual differences in RDs 
(Fig. 2D and fig. S1), we first examined whether an individual with 
a higher RD had better memory. Because the dimensionality was 
correlated with activation in some ROIs (fig. S2), all of the following 
analyses controlled the activation level. The results revealed that 
across participants, better associative memory performance was as-
sociated with greater dimensionality in FSR (R = 0.190, P < 0.001; 
Fig. 4A, left) and HIP (R = 0.110, P = 0.020; Fig. 4A, right). Separately 
for each face-selective subregion, we also found that higher dimen-
sionalities were associated with better associative memory per-
formance in all ROIs (Pcorrected ≤ 0.041), except for a marginal effect 
in the left FFA (R = 0.09, Pcorrected = 0.052; table S1). Similar positive 
correlations were also observed when using RDeig and RDvar as the 
dimensionality index and the item recognition d′ as the behavioral 
index (table S1 and Supplementary Results).

Given that the local smoothness may affect the estimation of di-
mensionality, we thus controlled the smoothness of the activation 
images of each participant when conducting the correlation analysis. 

Specifically, 3dFWHMx was used to calculate the smoothness and 
then averaged the smoothness from the X, Y, and Z directions for 
each participant. The results showed that RD and memory per-
formance were still significantly correlated after controlling for 
smoothness (fig. S3). Moreover, whole-brain searchlight analysis 
revealed that the dimensionality in the medial temporal lobe (MTL), 
part of the frontal and parietal lobes, was also significantly positively 
correlated with associative recognition (Fig. 4B), in addition to the 
fusiform and occipital gyrus. The results suggest that the dimension 
of representation contributes to successful memory encoding beyond 
the activation level.

To examine the specificity of the association between RD and 
face-name associative memory, we further correlated RDeff with the 
behavioral performance of the digital n-back task conducted in 
the scanner (see Materials and Methods). We found that individu-
als who performed better in the n-back task also showed higher 
associative recognition accuracy (R = 0.38, P < 0.001) and item rec-
ognition d′ (R = 0.30, P < 0.001) in the face-name associative mem-
ory task (fig. S4), suggesting that working memory could contribute 
to episodic memory. Nevertheless, we found no significant correlation 
between working memory performance and RDeff in FSR or HIP 
after controlling for the activation level (all P > 0.9). Separate for 
each subregion, the correlations were not significant either (all 
P > 0.1). Whole-brain searchlight analysis also failed to reveal sig-
nificant correlations. In addition, RDeff was significantly related to 
associative (R = 0.12, P = 0.018) and item memory (R = 0.15, P = 
0.003) in FSR and item memory in HIP (R = 0.10, P = 0.038) after 
controlling for working memory performance. These results suggest 
that RDeff contributes specifically to face-name associative memory 
but not to general cognitive ability.

Subsequently, remembered faces showed higher RDs
To further establish the relationship between RD and face memory, 
we examined SME by comparing RDs of subsequently remembered 
faces (faces with correct face-name associative recognition) with 
those of forgotten faces (all other faces). In this analysis, we excluded 
the participants whose accuracy for associative recognition was below 
chance level (i.e., 25%) or whose d′_item was smaller than 0 (n = 34). 
In addition, the number of items in the two conditions should be 
matched. According to fig. S5, there was a trade-off between the 
minimal number of items and the number of participants that could 

Fig. 3. Hierarchical face representation revealed by dimensionality analysis. (A) Group-averaged map of RDeff based on the searchlight method, which revealed in-
creasing dimensionality from posterior to anterior regions. (B) Differences in RDeff among ROIs. Error bars represent SEs across participants. LH, left hemisphere; RH, right 
hemisphere. ***Pcorrected ≤ 0.001.
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be included in this analysis. As a result, we systematically selected 7 
to 13 (step = 1) remembered and forgotten items for each participant 
and estimated their dimensionality in each region. We reported the 
results of 10 items in the main text because this condition showed a 
good balance between the number of items and the number of par-
ticipants (fig. S5). Similar results were found when different numbers 
of items were included (fig. S6).

Intriguingly, we found that subsequently remembered faces 
showed greater dimensionality than subsequently forgotten faces in 
FSR (t = 3.843, P < 0.001) and HIP (t = 2.267, P = 0.024; Fig. 4C). 
Separately for each subregion (Fig. 2, B and C), we found that the 
dimensionality in the bilateral pSTS (left: t = 2.976, Pcorrected = 0.019; 
right: t = 3.343, Pcorrected = 0.005) and anterior STS (aSTS; left: 
t = 2.721, Pcorrected = 0.034; right: t = 3.597, Pcorrected = 0.002) showed 
significant SME, whereas other subregions did not (Pcorrected > 0.09; 
Fig. 4D). Moreover, whole-brain searchlight analysis revealed that, 
in addition to the occipital gyrus, the left medial frontal gyrus, bilateral 
angular gyrus, and precuneus also showed SME of RDeff (fig. S7A). 
However, we did not find significant SME of RDeig and RDvar in any 
region (P > 0.052, uncorrected), which might be due to the insuffi-
cient discriminability of RDeig and RDvar.

Given the important role of HIP in associative memory (26, 27), 
we further examined whether HIP and FSR could contribute differ-
entially to item recognition and associative recognition. We thus 

further compared RDeff between faces with only item recognition 
(n = 10) and those with associative recognition (n = 10). In total, 
228 participants were included in the analyses. We found that faces 
with associative recognition showed greater RDeff than faces with 
item recognition in HIP (t = 2.045, P = 0.042) but not in FSR (t = 1.052, 
P = 0.294). Nevertheless, the region-by-memory interaction was not 
significant (F = 0.39, P = 0.53). These results provide partial support 
for the important role of high-dimensional hippocampal representa-
tions in associative memory.

RD did not reflect item-specific pattern similarity
Having identified the association between RD and face memory, we 
further examined the underlying mechanisms. Previous studies have 
found that item-specific neural representations (21–23) are associ-
ated with memory performance, and a greater RD could result in a 
more distinctive and item-specific representation. To test the hypoth-
esis that greater RD could improve episodic memory by increasing 
the item-specific representation, we first calculated the within-item 
(WI), between-item (BI), and item-specific pattern similarity (PS) 
and then correlated them with RD. WIPS was measured as the 
Pearson correlation of the activation pattern across the two repeti-
tions of the same face in each ROI, whereas BIPS was measured 
as the correlation between pairs of different faces that matched the 
WI pairs in memory performance and intertrial interval (23, 28).

Fig. 4. The association between RD and memory performance. (A) Scatterplots of memory performance (ACC_association) and dimensionality of the (left) FSR and 
(right) HIP. See table S1 for the correlation coefficients for each subregion after controlling the activation (ACT) level. (B) The dimensionalities of the MTL, medial frontal 
gyrus, and part of parietal lobe were positively related to associative memory performance (Z > 3.29, whole-brain corrected) after controlling for activation level. (C) Dif-
ferences in dimensionality between remembered pairs and forgotten pairs in FSR and HIP. (D) Differences in dimensionality between remembered pairs and forgotten 
pairs in face-selective subregions and HIP. Error bars represent SEs across participants. SME was based on 10 items under each condition. Similar results were found when 
using 7 to 13 items (fig. S6). ~Pcorrected ≤ 0.1, *Pcorrected ≤ 0.05, **Pcorrected ≤ 0.01, ***Pcorrected ≤ 0.001.
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Contrary to our hypothesis, partial correlation analysis with 
activation level as a covariate revealed no significant correlations 
between item-specific PS and RD in FSRs or HIP (R ranging 
from −0.091 to 0.059, all Pcorrected > 0.29). We used two one-sided 
tests (TOSTs) based on the TOSTER R package (29) to statistically 
reject the hypothesis that RDeff and item-specific PS are correlated 
(i.e., equivalence test). We found that with a sample size of 468 and 
80% power, the equivalence bounds were −0.13 and 0.13. In most 
ROIs, the 90% confidence intervals (CIs) of TOST were within the 
lower and upper bounds (PTOST < 0.05), except for the right aSTS 
(PTOST = 0.061) and HIP (PTOST = 0.196; fig. S8), suggesting that 
RDeff and item-specific PS were statistically uncorrelated.

In addition, the item-specific PS was not correlated with the ac-
curacy of associative recognition (R ranging from −0.068 to 0.082, 
Pcorrected > 0.45) or the d′ of item recognition (R ranging from −0.099 
to 0.043, Pcorrected > 0.19). Using the R package cocor (30) to com-
pare the correlation coefficients between RDeff and item-specific PS 
with memory performance, we found that the correlation between 
RDeff and ACC_association was significantly higher than that be-
tween item-specific PS and ACC_association in FSR (Z = 2.477, 
P = 0.013) but not in HIP (Z = 1.624, P = 0.104; table S2). The cor-
relation between RDeff and d′_item was significantly higher than 
that between item-specific PS and d′_item in both FSR (Z = 3.921, 
P < 0.001) and HIP (Z = 3.296, P = 0.001; table S2). Separately for 
each subregion, significant differences were observed in the right 
OFA (Z = 2.708, Pcorrected = 0.034) and aSTS (Z = 2.818, Pcorrected = 
0.029) for associative memory and in all subregions for item memory 
(all Pcorrected < 0.05; table S2).

In addition to intersubject correlation analysis, representational 
similarity analysis (RSA) revealed no SME of item-specific PS in FSRs 
or HIP (F ranging from 0.033 to 1.299, P > 0.2). Moreover, although 
several brain regions showed SME of item-specific PS, including the 
right inferior parietal lobule (Montreal Neurological Institute, MNI: 
54, −46, 44; Z = 3.997) and superior frontal gyrus (SFG; MNI: 22, 32, 
60; Z = 3.795; fig. S7B), in none of these regions was there SME of 
RD (fig. S7A). Direct comparison of SME of RDeff and item-specific 
PS revealed significantly larger SME of RDeff than item-specific PS 
in the left superior occipital gyrus (SOG) expanded to the superior 
parietal lobe (SPL), the left middle occipital gyrus (MOG), the right 
posterior cingulate cortex (PCC), and the bilateral occipital fusi-
form gyrus (OFG), and an opposite effect in the right SFG, the left 
middle temporal gyrus (MTG), and the left precentral gyrus (fig. S7C). 
Together, these results suggest that item-specific PS and RD reflect 
different aspects of neural information representation and contrib-
ute complementarily to episodic memory.

Frontoparietal activity positively correlated with RD
The above analyses have revealed close relationships between RD 
and episodic memory. What could contribute to the dimensionality 
of representation? Existing studies suggest that frontoparietal top-
down attention might exert top-down control (31), which modu-
lates RD (17, 18). More specifically, this modulation is posited to be 
achieved by suppressing the shared low-dimensional variance (12) 
and reducing the correlation of neuronal activities in the posterior 
regions (17, 18), resulting in more neural encoding space and thus 
greater RD. To test this mechanism in human participants, we 
examined whether frontoparietal activities can modulate the shared 
low-dimensional variance, the cross-voxel correlation of brain 
activities, and RD.

Given the close relationship between attention control and memory 
(20, 21, 23, 32, 33), the top-down control region was defined as the 
frontoparietal regions in which their activities were associated with 
memory performance both across items and participants. Using the 
univariate activation level to predict subsequent memory perform-
ance, we found that several brain regions showed stronger activation 
for subsequently recognized pairs than forgotten pairs (fig. S9, top), 
including the left inferior frontal gyrus (IFG) (MNI: −46, 28, 16; 
Z = 4.57), left SFG (MNI: −4, 62, 22; Z = 4.675) extended to frontal 
pole (FP), left MTL (MNI: −18, −4, −16; Z = 5.949), left MOG 
(MNI: −28, −102, −4; Z = 4.082), right inferior temporal gyrus (ITG) 
(MNI: 46, −60, −6; Z = 3.961), right inferior occipital gyrus (IOG) (MNI: 
40, −88, −10; Z = 5.107) extended to fusiform, right IFG (MNI: 46, 
26, 24; Z = 3.584), and right SPL (MNI: 28, −62, 50; Z = 3.997).

Correlational analysis suggested that individuals with better 
memory performance (ACC_association) showed greater activation 
in the left SFG (MNI: −4, 60, 36; Z = 4.176), left FP (MNI: 0, 8, 66; 
Z = 4.478), bilateral MOG (MNI: −4, −84, −16; Z = 5.879) extended 
to the fusiform gyrus and parietal lobe, bilateral MTL extended to 
the cingulate gyrus (MNI: 2, −44, 4; Z = 5.141), and bilateral caudate 
(MNI: 10, −4, 8; Z = 6.097) extended to the thalamus and right 
putamen (fig. S9, middle). Conjunction analysis revealed that the 
left FP, SFG, right SPL, bilateral MTL, and bilateral MOG were 
associated with episodic memory performance both across items 
and across participants (fig. S9, bottom). The left FP, SFG, and right 
SPL were thus defined as the top-down control regions for subse-
quent analyses.

Focusing on the frontoparietal regions, partial correlation analy-
ses (after controlling for the activation level in the posterior re-
gions) revealed that the activation in the left SFG was significantly 
related to dimensionality in the bilateral pSTS (left: R = 0.195, 
Pcorrected < 0.001; right: R = 0.190, Pcorrected < 0.001) and aSTS (left: 
R = 0.158, Pcorrected = 0.003; right: R = 0.157, Pcorrected = 0.003; table S3). 
Activation in the right SPL was significantly positively correlated with 
dimensionality in the bilateral pSTS (left: R = 0.150, Pcorrected = 0.007; 
right: R = 0.168, Pcorrected = 0.002), right pcSTS (R = 0.130, Pcorrected = 0.019), 
aSTS (R = 0.143, Pcorrected = 0.009), and HIP (R = 0.126, Pcorrected = 0.019; 
table S3). No significant correlation was found between left FP acti-
vation and dimensionality in the face-selective subregions or HIP 
(all P > 0.16).

Frontoparietal activities negatively correlated with  
low-dimensional variability
We found that the left SFG activation was negatively correlated with 
the eigenvalues of the first six components in FSR and HIP after 
controlling the activation level (Fig. 5A, left). Similarly, the right 
SPL activation was negatively correlated with the first seven eigen-
values in FSR and the first six eigenvalues in HIP (Fig. 5A, right). 
These results were consistent with the results from population neuron 
recording (12) and further suggest that top-down activities could 
suppress the first few shared variances (i.e., low-dimensional vari-
ances) and increase the dimensionality of neural representations.

To further examine the functional role of the low-dimensional 
variances, we correlated memory performance with the eigenvalue 
of each PC. We found that for FSR, the eigenvalues of the first seven 
components were also negatively correlated with associative recog-
nition (ACC_association) and that starting from the eighth compo-
nent was positively correlated with associative memory performance 
(Fig. 5B, left). For HIP, we also found that the first 9 eigenvalues 

D
ow

nloaded from
 https://w

w
w

.science.org on M
ay 24, 2022



Sheng et al., Sci. Adv. 8, eabm3829 (2022)     20 April 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

7 of 13

(except for the 8th eigenvalue) were negatively correlated with asso-
ciative memory performance, and positive associations were found 
from the 10th component (Fig. 5B, left). Similar results were found 
for item recognition (d′_item; Fig. 5B, right). We also systematically 
varied the number of items (n from 10 to 29) included in this anal-
ysis, which again revealed the same pattern of correlation in FSR 
and HIP (fig. S10).

Similar results were found when comparing subsequently re-
membered and forgotten items. In particular, for FSR, the eigenvalue 
of the second (t = 2.826, P = 0.005) component was greater for the 
forgotten faces (n = 10) than the remembered faces (n = 10), whereas 
a reversed pattern was found for the sixth (t = −2.946, P = 0.003) 
component (Fig. 5C). Together, these results suggest that low- 
dimensional variance was associated with worse memory performance 
and that frontoparietal activities could suppress this variance and 
improve memory performance.

Frontoparietal activities modulated the cross-voxel 
correlation of brain activities
One way to suppress the low-dimensional shared variance is to 
reduce the correlations of homogeneity of local neural responses 
(17, 18, 34, 35), which could increase the encoding space of neurons 
and increase the dimensionality. To test this hypothesis, we further 
examined whether this top-down effect was achieved by reducing 
the cross-voxel correlation of brain activities in posterior regions. 
To do this, we calculated the homogeneity of activation (HOA), 
which is the averaged cross-voxel correlation (Fisher’s r-to-Z trans-
formed) in each ROI (Fig. 5D). A higher HOA would indicate greater 
correlations among voxels and thus a smaller encoding space. Con-
sistent with our hypothesis, we found that HOAs of all the sub-
regions were negatively correlated with their RDeff after controlling for 
the activation level (R ranging from −0.137 to −0.528, all Pcorrected < 0.01; 
table S4). Moreover, greater left SFG activation was associated with 
lower HOA in the left pSTS (R = −0.169, Pcorrected = 0.002) and the 

right aSTS (R = −0.122, Pcorrected = 0.050), and greater right SPL acti-
vation was associated with lower HOA in the left pcSTS (R = −0.171, 
Pcorrected = 0.001) and the right pSTS (R = −0.134, Pcorrected = 0.022; 
table S4).

The mediation analyses revealed that HOA in the left pSTS, aSTS, 
and right aSTS partially mediated the relationship between the left 
SFG activation and the dimensionality in these regions (Fig. 5E and 
Table 1). In addition, HOA in the left pcSTS completely mediated 
the relationship between rSPL activation and dimensionality in this 
region, and there was a partial mediation effect in the right pSTS 
(Fig. 5E and Table 1). These results indicate that top-down atten-
tional control could increase the neural coding space in STS, resulting 
in a larger RD.

DISCUSSION
How the neural system encodes information to achieve efficiency and 
generalization is still under debate (36, 37). A neural system encodes 
information most efficiently but is costly when its stimulus responses 
are high-dimensional and uncorrelated (5, 10, 38) and most robustly 
but redundantly when they are low-dimensional and correlated 
(39, 40). To achieve a balance, it is posited that the brain needs a 
trade-off mechanism that could reduce the dimensionality to elim-
inate irrelevant factors and at the same time recast the remaining 
factors into a high-dimensional space to generate complex behavior 
(41). This mechanism has gained support from a recent animal study, 
which found efficient and robust representation in the mouse brain 
(4). The current human neuroimaging study extends this observation 
by showing that the human brain also encodes high-dimensional yet 
robust face representations. The RD is lower than the maximal pos-
sible dimensionality but is much higher than the dimensionality re-
quired by the deep neural network model to identify individual faces.

Consistent with the hierarchical organization of face representa-
tion (25), we found that the representations in the more anterior 

Fig. 5. Top-down attentional modulations of RDs. (A) Partial correlation between the activation in the left SFG (lSFG) and right SPL (rSPL) with the eigenvalue of each 
PC in FSR and HIP. Mean activation of these two regions was controlled as a confounding variable. (B) Results of Pearson correlation analyses between the eigenvalue of 
each PC with associative recognition (ACC_association) and item recognition (d′_item) after controlling for the activation level. The asterisks indicate that the partial 
correlation coefficient was statistically significant (i.e., P < 0.05). (C) SME for the eigenvalue of each PC in FSR. Error bars represent the within-subject SEs. (D) Schematic 
diagram of homogeneity of activation (HOA) analysis. (E) Local HOA mediates the relationship between lSFG and rSPL activation and local RD (related to Table 1). a × b, 
indirect (mediation) effect; c′, direct effect; c, total effect (indirect + direct); **P < 0.01.
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face regions showed significantly higher dimensionality. In particu-
lar, face-specific processes are initiated in OFA based on local facial 
features, and then the information is forwarded to higher-level 
regions, such as FFA, for holistic processing (25, 42, 43). Consistently, 
lesions in more posterior areas tend to cause facial perception 
defects, whereas lesions in more anterior areas are likely to produce 
configuration processing or facial memory problems (44–46). A re-
cent fMRI study combining computational models directly examined 
the information representations in FSRs, which revealed that OFA 
represented low-level image-computable properties (such as the 
grayscale). In contrast, FFA contains high-level visual features and 
social information (47). Last, the greater RD in the right hemisphere 
FSR is also consistent with the right hemisphere lateralization of face 
processing (48–53).

Notably, we found that HIP had the highest dimension compared 
to FSR. This is in line with its highly sparse and unrelated neural 
representations (54–57). A large percentage of cells in HIP exhibited 
poor spatial tuning (58) and showed sensitivity to the visual similarity 
of objects (59). This sparse coding is posited to contribute to pattern 
separation (59–61) by projecting neuronal activity onto a larger 
population and reducing the proportion of active neurons, thereby 
reducing the overlap of different neuronal firing patterns (62, 63). 
Given the different neuronal computations in the hippocampal sub-
fields, e.g., the dentate gyrus (DG) in pattern separation (55, 61, 64) 
and the CA3 region in pattern completion through autoassociation 
(65–67), future studies should further examine RDs in the hippo-
campal subfield using ultrahigh-resolution scans.

Our results discovered an important and robust relationship be-
tween RDs and subsequent memory. Using a large sample and indi-
vidual difference approach, we found that individuals showing 
overall higher RDs had better memory performance. The positive 
correlation between RD and memory performance does not depend 
critically on specific measurements of dimensionality but is generally 
applicable to different indicators (i.e., RDeff and RDvar). In addition 
to FSRs and MTL, whole-brain searchlight analysis revealed that RD 
in the posterior midline regions (PMRs) could also predict memory 
performance. PMR usually shows below-baseline level activation 
during episodic encoding, and this deactivation reliably predicts 
successful memory performance (68–71). Critically, RSA found that 
the (de)activation pattern carried information about the encoded 
items, and PS predicts subsequent memory performance (21, 72). As 
a result, PMR has been considered an extension of the hippocampal 

memory system (73, 74). Consistently, we also found significant 
item-specific representation in this region (t = 5.120, P < 0.001). 
These results together emphasize the contribution of the posterior 
midline structure to successful memory encoding.

In addition to the cross-subject correlations, the within-subject 
analysis revealed that subsequently remembered faces showed greater 
RDs than subsequently forgotten faces. Partially supporting the role 
of HIP in associative memory (26, 27), we further found that faces 
with associative recognition showed higher RDeff than those with 
only item recognition in HIP but not in FSR. These results are con-
sistent with the idea that the high dimensionality of neuronal repre-
sentations might optimize information encoding (75) and could 
resist distractors (38). Consistently, reinforcement learning could 
increase the dimensionality of neuronal response (10), and quick 
learners have a higher dimensional representation than slow learners 
(5). In contrast, error trials showed reduced dimensionality (76).

Animal studies have shown that frontoparietal attentional activity 
can reduce the baseline correlation between neurons (16–19, 77) and 
increase the dimensionality of neuronal encoding (12, 14). Compu-
tational modeling suggests that these observations could be parsi-
moniously achieved by a top-down modulation of inhibitory neurons, 
which could suppress population-wide fluctuations, reduce low- 
dimensional shared variabilities (12), and stabilize neuronal re-
sponses in the posterior regions (14).

The present study provides important human neuroimaging 
evidence to support and extend this top-down mechanism. In 
particular, we found that RD in face-selective subregions was 
correlated with activation in the frontoparietal area (i.e., left SFG 
and right SPL), a critical component of the dorsal attention system 
implicated in goal-directed and exogenous shifts in attention (78). 
We found that the frontoparietal activities were negatively cor-
related with the eigenvalues in the first few PCs, which reflected 
the shared low- dimensional variances of neuron activities. We fur-
ther revealed that these shared low-dimensional variances impaired 
memory performance. Together, these human results are con-
sistent with the hypothesis that top-down control could suppress 
the shared low- dimensional variances and reduce the correlation 
of local neural response, which, in turn, increases the encoding 
space (dimensionality) and the amount of information encoded 
by a given population of neurons. This ultimately leads to better 
episodic memory performance. Nevertheless, given the correla-
tional nature of our analysis, the causal relationship should be 

Table 1. The mediation effect of HOA on the correlation between frontoparietal activation and RDeff in face-selective areas. c, total effect (indirect + direct); 
c′, direct effect; ab, indirect (mediation) effect. ~Pcorrected ≤ 0.1, *Pcorrected ≤ 0.05, **Pcorrected ≤ 0.01, ***Pcorrected ≤ 0.001. 

ROI (top)
ROI (posterior)

c c′ ab
Hemisphere Name

lSFG
Left

pSTS 1.166*** 0.697*** 0.469***

aSTS 0.861*** 0.653** 0.208*

Right aSTS 0.905*** 0.552* 0.353**

rSPL

Left pcSTS 0.265* 0.104 0.16***

Right
pcSTS 0.333** 0.185~ 0.148~

pSTS 0.418*** 0.253* 0.165*

aSTS 0.334** 0.204~ 0.13~
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established in future studies by using noninvasive brain stimulation 
approaches (20).

Our results suggest that RD and item-specific representation 
might reflect different aspects of information representation and 
contribute separately to memory performance. First, extending pre-
vious studies (21–23, 79–82), we found that item-specific PS in 
several brain regions was associated with better subsequent episodic 
memory (1). Nevertheless, the regions showing significant SME of 
item-specific PS did not overlap with FSR and HIP, whose RDs 
were associated with memory performance. Second, RD did not 
correlate with item-specific PS. Last, the cross-subject analysis showed 
that memory performance was only correlated with RD but not 
with item-specific PS. Existing studies suggest that item-specific PS 
reflects the reproducibility and uniqueness of item representation, 
which could be contributed by study-phase retrieval (79), dynamic 
representational transformation during encoding (82), and top-down 
attentional modulation (20). In contrast, RD reflects the degree of 
nonshared variances across all stimuli. More studies are required to 
further understand the nature and contributing factors of these di-
verse aspects of neural representations.

Moreover, it is still a challenge to objectively determine the 
dimension of representations in the neural system with significant 
noise. To circumvent this issue, we relied on cross-subject and 
cross-item comparisons and used multiple indices to obtain con-
sistent and reliable results. Nevertheless, the relatively small 
number of items might prevent a detailed characterization of the 
information representations in the brain. Future studies could use 
significantly more items (4) and cross-validation procedures (83) to 
recover the dimensionalities on data with noisy structures. In addi-
tion, future studies should use and compare multiple measures that 
reflect RD, including the intervoxel similarity that examines the 
averaged cross-voxel correlations of BOLD time series (34, 35).

Last, extant results support the idea that the brain encodes in-
formation in a goal-directed manner, and dynamic changes in RDs 
have been found during various stages of the task (54). For example, 
in a categorization learning task, the ventral medial prefrontal cortex 
exhibited goal-directed dimension reduction, as predicted by the 
computational model (6). Greater dimensional reduction is also found 
in an action learning task than in a value learning task, and the latter 
requires more fine-grained discrimination of different values (10). 
During task switching, the dorsal lateral prefrontal cortex showed 
low-dimensional representations of the behaviorally relevant cate-
gories, enabling the exclusion of irrelevant categories (84). Future 
studies should examine how the dimensionality of neural representa-
tions is flexibly configured in various memory stages to support dif-
ferent memory functions (e.g., familiarity and recollections) and in 
different memory tasks (e.g., recognition and recall).

To conclude, combining a large fMRI sample and novel analytical 
approaches, the current study discovers a robust relationship be-
tween RD and episodic memory performance and further provides 
a systematic examination of the underlying mechanisms. These 
results significantly advance our understanding of the representa-
tional mechanisms of episodic memory (1).

MATERIALS AND METHODS
Participants
Four hundred seventy-eight healthy Han Chinese college students 
were recruited for this study as part of a large cohort study in China, 

i.e., the Cognitive Neurogenetic Study of Chinese Young Adults 
(CNSCYA). Ten participants were excluded due to incomplete im-
aging data (N = 1) or large head motion (mean framewise displace-
ment > 0.3, N = 9). As a result, 468 participants (243 females, mean 
age = 21.44 ± 2.10) were included in the analyses. This study 
was approved by the Institutional Review Board of the State Key 
Laboratory of Cognitive Neuroscience and Learning at Beijing 
Normal University.

Face-name associative memory task
Stimuli
The experimental stimuli consisted of 30 unfamiliar face photo-
graphs (15 men and 15 women, which were chosen from the internet). 
Fictional first names (e.g., “Carol”) and common surnames (e.g., 
“Lee”) were assigned to each face and were used for encoding. 
Another 20 unfamiliar face photographs (10 men and 10 women) 
were used for the memory test. All face pictures were converted into 
grayscale images with the same size (256 × 256 pixels) on a gray 
background. All these face pictures had a neutral facial expression. 
Four additional face-name pairs were used in the practice session.
Procedures
During fMRI data acquisition, participants were asked to remember 
30 unfamiliar face-name pairs. For each face-name pair, participants 
were instructed to remember the name associated with the face for 
later memory testing by pressing a button to indicate whether each 
name “fit” the face (right index finger = the name fit the face; right 
middle finger = the name did not fit the face). Participants were 
informed that it was a purely subjective judgment designed to help 
them memorize the association between faces and names. Each 
face-name pair was presented twice, with an interrepetition interval 
ranging from 8 to 17 trials. A slow event-related design (12 s for 
each trial) was used in this study to obtain better estimates of the 
single-trial BOLD response associated with each trial (Fig. 1A). Each 
trial started with a 0.5-s fixation, followed by a picture presented for 
2.5 s. Then, the frame of the picture turned red, which indicated that 
the participants should press the button to indicate their response 
within 1.5 s. To prevent further encoding of the pictures, partici-
pants were asked to perform a perceptual orientation judgment task 
for 7.5 s. In this task, a Gabor image tilting 45° to the left or the right 
was presented on the screen, and participants were asked to identify 
the orientation of the Gabor image as quickly as possible by press-
ing the cone of the two buttons. A self-paced procedure was used to 
engage in this task, and the next Gabor image appeared 0.2 s after 
the response. Participants finished only one run of the encoding 
task, which lasted 12 min. Before the scan, they finished a practice 
session to familiarize themselves with the task and key responses. 
They were informed that there would be a subsequent memory test 
later, but they were not informed of the specific process of the 
memory test.

Approximately 24 min later, during which the participants 
performed some other fMRI experiments (an n-back task and a 
decision-making task), participants were asked to complete the 
retrieval test in the fMRI scanner. The retrieval test stimuli consisted 
of the same 30 face pictures from the encoding stage and 20 new 
face pictures. All the pictures were randomly mixed. For each face 
picture, three old names from the encoding stage without a surname 
(the correct name that was actually paired with the face during 
encoding, and the other two names that were paired with different 
faces during encoding) and a new choice were underneath the face 
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(Fig. 1A). The location of the correct name was counterbalanced for 
equal numbers on the three locations of the names. Participants 
were asked to judge whether they had seen the face and indicated 
the corresponding correct name if the face was old; otherwise, they 
had to press the new button if the face was new. Each trial started 
with a 0.5-s fixation, followed by a picture presented for 4 s. Partic-
ipants were asked to press the button to indicate their response 
within 4 s. The responses were made using a button box (the left 
index finger corresponded to the first name, the left middle finger 
corresponded to the second name, the right index finger corre-
sponded to the third name, and the right middle finger corresponded 
to new). After the face, a fixation cross of jittered duration (0 to 8 s) 
was placed on the center of the screen. This testing run lasted 
approximately 5 min.

Digital n-back task
After the face-name associative memory task, participants were asked 
to perform a digital n-back task (from 0-back to 3-back) in the scanner, 
with 0-back as the baseline. For the 0-back task, participants were to 
judge whether the number presented in the center of the screen was 
7 or not. For 1-back to 3-back, participants had to decide whether 
the current number was the same as the one shown “n” items (n = 1, 
2, or 3) before.

Behavioral data analysis
For the face-name associative task, studied faces recognized with 
the correct name were defined as remembered items, whereas those 
recognized with an incorrect name or judged as new were defined as 
forgotten items. Two behavioral measures were generated from this 
task, i.e., associative recognition and item recognition. Associative 
recognition refers to the correct recognition of face-name associa-
tions, which was quantified as the accuracy for both the old (i.e., 
choosing the correct name) and new faces (i.e., correct rejection). In 
contrast, item recognition refers to the correct recognition of old 
faces regardless of the correctness of names (hit). New faces that 
were incorrectly recognized with a given name were defined as false 
alarm items. The d′ score was used as the index of item recognition 
and was calculated by using the following formula: d′ = Z (hit rate) − Z 
(false alarm rate).

For the digital n-back task, we separately calculated d′ for the 
1-back, 2-back, and 3-back tasks and averaged them to reflect the 
overall n-back task performance. Accuracy in the 0-back task was 
used to screen participants who were not paying attention to the 
task. Participants with an accuracy lower than 90% in the 0-back task 
(n = 54) were excluded from further analysis on the relationship 
between RD and n-back performance.

MRI data collection and processing
MRI data acquisition
Image data were acquired using a 3.0 T Siemens MRI scanner in the 
Brain Imaging Center at Beijing Normal University. Visual stimuli 
were projected onto a screen behind the scanner, which was made 
visible to the participant through a mirror attached to the head coil. 
Stimuli and responses were presented and recorded by MATLAB 
(MathWorks) and Psychtoolbox on a Windows PC. A single-shot 
T2*-weighted gradient-echo, echo planar imaging (EPI) sequence was 
used for the functional scan with the following parameters: repetition 
time (TR) = 2000 ms; echo time (TE) = 25 ms; flip angle (FA) = 90°; 
field of view (FOV) = 192 × 192 mm2; 64 × 64 matrix size with 

a resolution of 3 × 3 mm2. Forty-one 3-mm transversal slices paral-
lel to the Anterior and Posterior Commissure (AC-PC) line were 
obtained to cover the whole cerebrum and partial cerebellum. The 
anatomical scan was acquired using a T1-weighted MPRAGE sequence 
with the following parameters: TI = 1100 ms, TR/TE/FA = 2530 ms/ 
3.39 ms/7°, FOV = 256 × 256 mm, matrix = 256 × 256, slice thickness = 
1.33 mm, and 144 sagittal slices.
fMRI data preprocessing
MRI data were first converted to Brain Imaging Data Structure (BIDS) 
format using in-house MATLAB scripts. MRIQC v0.15.1 (85) was 
used as a preliminary check of MRI data quality.

Image preprocessing analyses were performed by using fMRIPrep 
v1.4.0 (86), which is based on Nipype 1.2.0 (87). The first three vol-
umes before the task were automatically discarded by the scanner to 
allow for T1 equilibrium. Each T1w volume was corrected for 
intensity nonuniformity and skull stripping. Spatial normalization 
to the ICBM 152 Nonlinear 6th Generation Asymmetrical template 
was performed through nonlinear registration using brain-extracted 
versions of both the T1w volume and template. All analyses reported 
here use structural and functional data in MNI space. Brain tissue 
segmentation of cerebrospinal fluid, white matter, and gray matter 
was performed on the brain-extracted T1w image. Functional data 
were slice time–corrected and head motion–corrected. This was fol-
lowed by coregistration to the corresponding T1w using boundary- 
based registration with nine degrees of freedom. A mask to exclude 
signals with cortical origin was obtained by eroding the brain mask, 
ensuring that it contained only subcortical structures. Framewise 
displacement was calculated for each functional run.
Univariate activation analysis
Before conducting the univariate activation analysis, data were spa-
tially smoothed using a 6-mm full width at half maximum (FWHM) 
Gaussian kernel and filtered in the temporal domain using a non-
linear high-pass filter with a 100-s cutoff. General linear modeling 
within the FMRIB’s Improved Linear Model (FILM) module of FMRIB’s 
Software Library (FSL) was used to model the data. During the encod-
ing stage, the remembered and forgotten face-name pairs were sepa-
rately modeled. The incorrect trials in the perceptual orientation task 
were coded as an additional nuisance variable, whereas the correct trials 
were not coded and thus were treated as an implicit baseline. Events were 
modeled at the time of stimulus onset and convolved with the canonical 
hemodynamic response function (double gamma function). SME 
was defined as the difference between remembered and forgotten 
pictures. These contrasts were then used for group analysis with a 
random-effects model using full FLAME (FMRIB’s Local Analysis of 
Mixed Effects) Stage 1 with automatic outlier detection (88, 89). 
Unless otherwise noted, group images were thresholded using clus-
ter detection statistics, with a height threshold of Z > 2.3 and a cluster 
probability of P < 0.05, corrected for whole-brain multiple compar-
isons using Gaussian random field theory.
Single-item response estimation
A generalized linear model (GLM) was performed to estimate the 
activation pattern for each repetition of the face-name pairs during 
encoding. The same preprocessing procedure as in the univariate 
analysis was used except that no spatial smoothing was applied. A 
least-square single method was used in this single-trial model, 
where the target trial was modeled as one explanatory variable (EV), 
and all other trials were modeled as another EV (90). Each trial was 
modeled at its presentation time and convolved with a canonical 
hemodynamic response function (double gamma). This voxelwise 
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GLM was used to compute the activation associated with each of the 
60 trials in the task. The procedure of single-item response estima-
tion was applied in the native space at first, and then the activation 
brain map, t statistical map (91), was transformed to the MNI152 
space using the antsApplyTransforms tool from the Advanced 
Normalization Tools (ANTs) (92). The normalized activation brain 
map was used to estimate RD and perform RSA.

Definition of ROIs
We focused the analyses on FSR and bilateral HIP. FSR was defined 
by the probabilistic functional atlas (threshold at 10% probability) 
obtained from 202 healthy adults (48). FSR consists of OFA, posterior 
and anterior FFAs (pFFAs and aFFAs), pcSTS, pSTS, and aSTS 
(Fig. 2B). Considering that aFFA is too small (e.g., the number of 
voxels in the left aFFA is 182), we combined aFFA and pFFA into 
FFA in this study. HIP was defined using the Harvard-Oxford prob-
abilistic atlas (threshold at 25% probability; Fig. 2C).

RD estimation
The dimensionality of facial representation was estimated by PCA 
(Fig. 2A). The dimensionality of the 30 faces was estimated sepa-
rately for each repetition (Rep1 and Rep2). For a given region con-
taining m voxels, the activation values of the 30 faces were extracted 
and reshaped as an m (voxels) × n (items, n = 30) matrix. After 
demeaning along the rows (items) (83), the standardized covariate 
matrix M (n × n) was obtained by calculating pairwise Pearson cor-
relations among activation patterns of items. We then performed 
PCA on the resulting matrix M by using the MATLAB function 
pcacov, which is based on singular value decomposition. We esti-
mated RD according to the three criteria. First, RDvar was estimated 
by the number of PCs required to explain 90% of the variance (6). 
Second, RDeig was defined by the number of eigenvalues greater 
than 1, which is based on the Kaiser rule (24). Notably, the Pearson 
correlation matrix was used to fulfill PCA because the Kaiser rule 
(i.e., eigenvalues greater than 1) is used to estimate RD. However, 
this index has one major limitation. That is, for the same number of 
eigenvalues larger than 1 (RDeig), the cumulative variance explained 
by these eigenvalues was quite variable among participants. Given 
the arbitrary cutoff of eigenvalues “larger than 1,” some leftover 
variances are signals but not just noise. As a result, for two partici-
pants who have the same RDeig, the one who has a less explained 
cumulative variance by the larger than 1 eigenvalues should have 
more variances to be explained by the “smaller than 1” eigenvalues 
and thus a higher overall dimensionality. RDvar has been proposed 
to address this limitation, where the number of dimensions is deter-
mined by the number of eigenvalues required to explain a certain 
amount of cumulative variance, e.g., 90%. However, this measure 
might be affected by the number of very small eigenvalues, which is 
likely to be noise. To jointly take into consideration the major 
eigenvalues and their explained cumulative variance, we calculated 
RDeff by dividing RDeig by the cumulative variance (V) explained by 
eigenvalues larger than 1. Unless otherwise stated, the averaged di-
mensionality across two repetitions was used for further analyses.

We further estimated the dimensionality of the 30 facial materials 
in the computational model. First, the 30 faces were passed on to 
OpenFace (93) (http://cmusatyalab.github.io/openface/), a pretrained 
deep neural network, to generate 128 descriptor measurements for 
each face. The correlation matrix was then obtained by performing 
the Pearson correlation analysis for each pair of face images. 

Similarly, the dimensionality for facial images was estimated by us-
ing pcacov on the resulting correlation matrix and according to 
the Kaiser criterion.

Representational similarity analysis
RSA was based on the single-item response pattern. Before con-
ducting RSA, the mean activation pattern across all trials was sub-
tracted from the activation images for each participant. We then 
calculated WI, BI, and item-specific (WI-BI) PS. WIPS was mea-
sured as the Pearson correlation of the activation pattern across the 
two repetitions of the same face, whereas BIPS was measured as the 
correlation between pairs of different faces that matched the WI pairs 
in memory performance and intertrial interval (23, 28). This analysis 
was performed in the predefined ROIs and the whole brain using 
the searchlight method with 125 surrounding voxels (94). SME was 
examined by comparing the item-specific PS (i.e., WI-BI PS) between 
recognized and forgotten face-name pairs. A random-effects model 
was used for group analysis. Because no first-level variance was 
available, an ordinary least square model was used. Notably, 
one participant was excluded from the SME analysis because of the 
nearly perfect memory performance (i.e., recognized 29 pairs out 
of 30 face-name pairs).

Direct comparison of SME of RDeff and item-specific PS
In addition, we directly compared SME between RDeff and item- 
specific PS using the z score maps. First, RDeff for remembered and 
forgotten items was z-scored for each voxel and each participant, 
and SME of RDeff was obtained by subtracting the z-scored RDeff of 
forgotten items from that of the remembered items. Notably, this 
z transformation did not affect the SME effect. The same z trans-
formation was performed for the item-specific PS, and SME of 
item-specific PS was obtained by subtracting the z-scored item- 
specific PS of forgotten items from that of the remembered items. 
The resultant z score maps were then directly compared to examine 
the difference in SME between RDeff and item-specific PS. The 
number of remembered and forgotten items was matched, and 
321 participants who had at least 10 remembered and forgotten 
items were involved in this analysis.

Two one-sided tests
TOSTs based on the TOSTER R package (29) were used to test the 
independence of RDeff and item-specific PS. First, the powerTOSTr 
function was used to determine the equivalence bounds with a sam-
ple size of 468 and 80% power. The TOSTr function was then used 
to test the hypothesis of a lack of association between RDeff and 
item-specific PS. TOST is rejected, and equivalence/independence 
can be concluded if the 90% CI for TOST is within the lower and 
upper bounds. The null hypothesis statistical test (NHST) is accepted 
if the 95% CI for NHST includes zero.

Mediation analysis
Mediation effect tests were implemented with mediation (95) in 
R 4.1.1 (96) to examine whether HOA mediated the relationship 
between frontoparietal activation and dimensionality in the face- 
selective areas. HOA was estimated by averaging Fisher’s Z trans-
formed correlation coefficients, which were the cross-trial Pearson 
correlation coefficients among the voxels in each ROI (Fig. 5D). We 
examined the relationship between (i) frontoparietal activation (X) 
and the dimensionality in the posterior ROIs (Y) (Y = k1 + cX + 1), 
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(ii) HOA in the posterior ROIs (M) and frontoparietal activation 
(X) (M = k2 + aX + 2), and (iii) frontoparietal activation (X) and the 
dimensionality in the posterior ROIs (Y) with mediator (Y = k3 + 
c′X + bM + 3). In the above equations, X (frontoparietal activation) 
is the predictor, Y (dimensionality) is the dependent variable, and 
M (HOA) is the mediator. The indirect effect was estimated as a × b, 
and the mediated proportion was estimated by the indirect effect 
divided by the total effect (c = a × b + c′). Unless otherwise specified, 
P values were corrected using Holm-Bonferroni correction for mul-
tiple comparisons.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abm3829

View/request a protocol for this paper from Bio-protocol.
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