
Neurotensin Receptor 1 Gene (NTSR1) Polymorphism Is
Associated with Working Memory
Jin Li1,2, Chuansheng Chen2*, Chunhui Chen1, Qinghua He1,3, He Li1, Jun Li1, Robert K. Moyzis4, Gui

Xue1,3, Qi Dong1*

1National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People’s Republic of China, 2Department of Psychology and Social

Behavior, University of California Irvine, Irvine, California, United States of America, 3Department of Psychology, University of Southern California, Los Angeles, California,

United States of America, 4Department of Biological Chemistry, University of California Irvine, Irvine, California, United States of America

Abstract

Background: Recent molecular genetics studies showed significant associations between dopamine-related genes
(including genes for dopamine receptors, transporters, and degradation) and working memory, but little is known about the
role of genes for dopamine modulation, such as those related to neurotensin (NT), in working memory. A recent animal
study has suggested that NT antagonist administration impaired working memory in a learning task. The current study
examined associations between NT genes and working memory among humans.

Methods: Four hundred and sixty healthy undergraduate students were assessed with a 2-back working memory paradigm.
5 SNPs in the NTSR1 gene were genotyped. 5 ANOVA tests were conducted to examine whether and how working memory
differed by NTSR1 genotype, with each SNP variant as the independent variable and the average accuracy on the working
memory task as the dependent variable.

Results: ANOVA results suggested that two SNPs in the NTSR1 gene (rs4334545 and rs6090453) were significantly associated
with working memory. These results survived corrections for multiple comparisons.

Conclusions: Our results demonstrated that NTSR1 SNP polymorphisms were significantly associated with variance in
working memory performance among healthy adults. This result extended previous rodent studies showing that the NT
deficiency impairs the working memory function. Future research should replicate our findings and extend to an
examination of other dopamine modulators.
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Introduction

Working memory (WM) refers to the brain function involved in
the temporary manipulation (i.e., processing, integration, storage,
retrieval, etc.) of the information necessary for complex cognitive
tasks such as language comprehension, learning, and reasoning
[1]. Twin studies have shown that individual differences in WM
capacity are likely to have a significant genetic basis, with the
estimated heritability between 33% and 64% [2,3,4]. Pharmaco-
logical studies on both animals [5] and humans [6] have suggested
that dopamine (DA) in the brain modulates WM capacity. Finally,
molecular genetics studies showed significant associations between
DA-related genes (such as COMT, DRD4, and DAT) and WM
[7,8]. However, these studies only focused on genes for DA
receptors, transporters, and degradation, it is not clear if there are
any associations between genes that modulate DA and WM.
Neurotensin (NT), a tridecaptide widely distributed throughout

the central nervous system [9], acts as a neuromodulator,
particularly of DA transmission in several areas in the brain, such

as nigrostriatal and mesolimbic pathways [10]. During the past
decades, NT was widely studied with regard to its interaction with
the central DA system. Animal studies suggested that NT is co-
localized with DA in a subset of dopaminergic neurons projecting
from the ventral tegmental area to the medial prefrontal cortex
(PFC) [11,12]. The anatomical overlaps between the NT and the
DA systems allow them to have functional interactions at cellular
level [13]. For example, NT can activate dopaminergic neuron
firing [14,15]. Local administration of NT in the PFC has also
been found to increases DA release [16]. In addition, rodent
studies have shown that NT or NT analog can enhance DA
release in the striatum, nucleus accumbens, and PFC [17,18].
Furthermore, these cellular interactions have behavioral conse-
quences. For example, administration of NT or NT analogue can
stimulate DA-dependent behaviors, while NT antagonist can block
the effect of NT analogue [19,20]. These results suggest a
possibility that NT, which modulates DA transmission (e.g., in the
PFC), would also regulate DA-dependent (and PFC-related) WM
capacity.
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Human neurotensin receptor 1(NTSR1, coded by the human
gene NTSR1, which is located on chromosome 20q13) is a high
affinity NT receptor with 7 transmembrane spanning regions and
corresponds to G-protein-coupled receptor [21,22]. NT, acting on
NTSR1, reduces the physiological function of D2 dopamine
receptor [14]. In addition, a recent study showed altered DA
receptor mRNA expression in NTSR1 null mice [23]. Rodent
studies suggest that NT receptors are located on dopaminergic cell
bodies in both nigrostriatal and mesolimbic systems [24]. MRNA
expression [25] and protein content [26] of NTSR1 are distributed
throughout the central nervous system including the PFC and the
anterior cingulate, two critical regions for working memory
[27,28]. One recent rodent study has suggested that administra-
tion of NTSR1 antagonist impairs working memory in a learning
task [29]. However, no studies have been done with humans about
potential associations between NTSR1 gene variants and WM
capacity.
Some indirect evidence for such associations came from

research on the association between NT and schizophrenia.
Because impaired working memory has been found to be an
endophenotype of schizophrenia [30,31], susceptibility genes for
schizophrenia may be related to WM. Previous studies have
shown an important role for NT and NTSR1 in schizophrenia.
The density of NT receptors is decreased in schizophrenia
patients [32]. Furthermore, cerebrospinal fluid (CSF) levels of NT
are inversely related to the severity of psychosis in untreated
schizophrenics, whereas increased levels of NT are associated
with improvement in symptoms during treatment [33]. Similarly,
a study with rats confirmed the role of NT neurotransmission in
the effectiveness of antipsychotic drugs [34]. In terms of the
NTSR1 gene, one previous study [35] reported that NTSR1 gene
polymorphism was associated with schizophrenia, although two
later studies did not replicate this result [36,37]. Possible
explanations for the disagreement could be variations in genotype
frequencies across populations and selection of different loci for
the different studies. Future research needs to include multiple
SNPs.

The present study investigated whether genetic variants in the
NTSR1 gene were associated with performance on a WM task in a
large Chinese sample. We included five SNPs in the NTSR1 gene.

Results

The mean accuracy of all 458 subjects on the WM task was 0.85
(SD=0.08). Males and females had comparable mean accuracy,
0.85(SD=0.08) and 0.86(SD=0.08), respectively, F (1,456) = 1.22,
p=0.27.
Allele frequencies of the five SNPs in our sample were similar to

those of Han Chinese in the Hapmap database (www.hapmap.
org). There were no gender differences in allele frequencies for all
five SNPs (all ts,0.4, all ps.0.05).
ANOVA results showed that two of the five SNPs (rs4334545 and

rs6090453) significantly modulatedWMperformance (for rs4334545,
F (2,455)=7.82, p=4.661024; for rs6090453, F (2,455)= 5.63,
p=3.861023, both of which survived Bonferroni corrections. See
Table 1). Fisher’s least significant difference (LSD) post hoc tests
showed that, for rs4334545, WM performance was significantly
higher in CC genotype than in CT or TT genotype
(p=7.061023 and p=9.461024, respectively); for rs6090453,
GG genotype showed significantly higher WM performance
than did CG genotpe (p=2.861023), but the difference between
GG and CC genotypes (p=0.029, Figure 1) was no longer
significant after Bonferroni correction (which set the alpha at
.01, see the method section). Results were similar when we
combined the homozygotes of minor allele and the heterozy-
gotes together (for rs4334545, F (1,456) = 11.84, p=6.361024;
for rs6090453, F (1,456) = 10.97, p=1.061023).
The linkage disequilibrium (LD) between SNPs in the NTSR1

gene was calculated by Haploview [38]. The LD calculation result
is shown in Figure 2, r2 between rs4334545 and rs6090453 was
0.65. Our LD result was similar to that in the Han Chinese (CHB)
sample from the HapMap database (www.hapmap.org). No SNP
was blocked into a haplotype in these five SNPs; therefore we did
not perform any further haplotype association tests.

Table 1. Information of 5 SNPs on NTSR1 and their effects on WM performance.

SNP Position on chr 20 Genotype Counts Frequency WM performance F (2, 455) p

rs2427399 60801890 AA 24 0.05 0.86 (0.07) 1.47 0.23

AG 159 0.35 0.84 (0.08)

GG 275 0.60 0.86 (0.07)

rs6062460 60820535 TT 1 0.00 0.85 0.14 0.87

CT 50 0.11 0.86 (0.06)

CC 407 0.89 0.85 (0.08)

rs4334545 60823622 TT 27 0.06 0.81 (0.11) 7.82*** 4.661024

CT 160 0.35 0.84 (0.08)

CC 271 0.59 0.86 (0.07)

rs6090453 60825807 CC 35 0.08 0.83 (0.10) 5.63** 3.861023

CG 191 0.41 0.84 (0.08)

GG 232 0.51 0.86 (0.07)

rs6089784 60870007 TT 23 0.05 0.86 (0.07) 0.56 0.58

CT 167 0.36 0.86 (0.07)

CC 268 0.59 0.85 (0.08)

**p,.01.
***p,.001.
doi:10.1371/journal.pone.0017365.t001
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Imputation of SNPs from our data and the HapMap II data for
the selected 68 kb region for 458 participants allowed us to assess
whether additional association signals might be present in this
region. On the basis of these imputed data, the strongest evidence
for association was found for SNP rs3787527 (p=1.73610222;
Figure 3 and table 2). Indeed, within this 68 kb region, the
strongest association signals from imputed data were localized to a
24 kb region containing 12 highly correlated SNPs that are in
intron1 of the NTSR1 gene (table 2). Using data from the HapMap
Project, we found that all the SNPs with statistical associations
with WM performance except 2 SNPs (rs2427412 and rs3787527)
were in the same haplotype block(12 kb length) with rs4334545
and rs6090453 (Figure 3). However, in view of the low minor allele
frequency (MAF) of rs2427412 and rs3758527 (0.03 and 0.05,
respectively), we need to be cautious about drawing conclusions
regarding associations between these latter 2 SNPs and WM
performance.

Discussion

The present study used a relatively large Chinese sample to
investigate if there were any associations between variants of the
NTSR1 gene and working memory (WM). We found that two
SNPs’ polymorphisms (rs4334545 and rs6090453) in the NTSR1
gene were significantly associated with WM performance,
suggesting that the NTSR1 gene is involved in human higher
cognitive function. Specifically, we found that C allele in
rs4334545 and G allele in rs6090453 showed higher WM capacity
than their counterparts. To our knowledge, this is the first study
exploring the relationship between the NTSR1 gene and WM in
human subjects.
Several lines of previous research have suggested that dopamine

neurotransmission plays a pivotal role in WM. First, pharmaco-
logical modulation of dopamine receptor signaling pathway can
produce changes in functional circuits underlying WM in monkeys
[39]. Second, human studies also showed that performance
improvement after WM training was associated with changes in
cortical dopamine D1 receptor binding [40]. Third, several DA
system gene polymorphisms have shown to be associated with WM
performance, including genes for dopamine receptors, transport-
ers, and degradation. Taken together the results of our study and
those of previous studies, it seems that selected genes for all
important components of the DA system (DA receptors,
transporters, and degradations, and now modulators) are associ-
ated with WM. The NTSR1 gene encodes a high-affinity
neurotensin receptor, namely NTSR1. NTSR1 gene variants can
alter neurotensin function in the central nervous system, which in

turn modulates the DA system serving WM functions [41].
Neurotensin is widely distributed in dopaminergic neurons, and is
a well-demonstrated modulator of dopamine transmission. Micro-
injection of neurotensin into the PFC has been found to alter
dopamine cell firing and DA release [16,42]. In addition, the effect
of NT on DA release in the PFC was regulated by NTSR1
receptors [16]. The important role of NT in the DA system results
in potential associations between NT and DA-related cognition.
For example, NT agonist enhances memory consolidation through
the DA system [43]. Another study also showed that NT deficiency
impairs WM function. Rats infused with SR 48692, a preferential
NTSR1 antagonist, showed more WM errors than those injected
with saline [29]. Our study extends these results to human
subjects.

Figure 1. Associations between SNP polymophisms (rs4334545
and rs6090453) and WM performance. Working memory perfor-
mance was compared across different genotypes by one-way ANOVA
followed by Fisher’s LSD post hoc test. * p,.05, ** p,.01, ***p,.001.
doi:10.1371/journal.pone.0017365.g001

Figure 2. Schematic representation of the NTSR1 gene and
linkage disequilibrium map of selected SNPs. (a), Schematic
representation of NTSR1 gene, and relative positions of the 5 selected
SNPs. The NTSR1 gene is comprised of 4 exons and 3 introns. Boxes
represent exons. (b), Linkage disequilibrium map using data from our
study. Pairwise linkage disequilibrium values (r2 values) are indicated.
White, shades of gray, and black squares indicate no LD (r2 = 0),
intermediate LD (0,r2,1), and strong LD (r2 = 1), respectively.
doi:10.1371/journal.pone.0017365.g002
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The present study can also potentially offer some insights to
the diagnosis and/or treatment of schizophrenia. WM deficit is
widely considered as an endophenotype of schizophrenia
[30,31], and previous studies had already showed an important
role of NT in schizophrenia. Our results suggested that the
NTSR1 gene was associated with this significant endophenotype
of schizophrenia, and raised the possibility that we can take into
account of this information for schizophrenia diagnosis.
However, our study was limited to normal subjects, and future
studies are needed to explore this possibility in schizophrenia
subjects.
Two main limitations of the present study need to be

discussed. First, our results are associative. We did not explore
biochemical effects of the two SNP variants on the function of
NTSR1 protein. These two SNPs (rs4334545 and rs6090453) are
both in intron areas of the NTSR1 gene, which may or may not
have functional consequence on the protein. On the one hand,
previous papers showed that intron variants may play important
roles in gene expression [44], mRNA secondary structure
formation [45], and transcriptional suppression of the genes
[46]. It is possible that the 2 intronic SNPs associated with WM
performance play a role in regulating NTSR1 gene expression.
Further genetic and biochemical studies are needed to test this
hypothesis. Another possibility is that these 2 SNPs might have
very high linkage disequilibrium with a mutation of a nearby
SNP in exons. By conducting imputation analysis with the
HapMap data, we found 12 imputed SNPs with significant
statistical associations with WM performance, all of which were
localized around these 2 SNPs and to a 24 kb region in intron1
of the NTSR1 gene. The HapMap data further showed that 10 of
the 12 SNPs were in the same 12 kb haplotype block with the 2
SNPs found in our study, which to some extent explained similar
gene-behavior relationships of the NTSR1 gene and WM using
either the imputed SNPs or the 2 SNPs in our data. Given that

none of the SNPs in the imputed association analyses from the
HapMap data was in exons of the NTSR1 gene, the current
imputation analysis did not help us to find causative exon SNPs
with WM performance. Future studies should explore the
causative locus of the variants of NTSR1 function, and how
the NTSR1 gene variants impact on NTSR1 function and
modulate dopamine.
The second limitation of our study is that we only examined one

ethnic group (i.e., Han Chinese college students), which, from a
genetic standpoint, has major advantages. However, the same
strength of the current study limits the generalization of our results
to other populations. Previous studies showed that gene-behavior
relationship is modulated by sex, ethnicity and/or culture [47,48]
and further studies should be done to see if our results can be
applied to other groups.
In summary, NTSR1 SNP polymorphisms were significantly

associated with variance in working memory performance in a
sample of Chinese college students. This result extended a
previous rodent study showing that NT deficiency impairs working
memory [29]. Future research should replicate our findings in
independent samples and extend to an examination of other
dopamine modulators.

Materials and Methods

Participants
Four hundred and sixty (261 females) healthy undergraduate

students (aged from 18 to 23 years, with a mean of 20.4 years,
SD=0.87) were recruited from Beijing Normal University. All
participants were Han Chinese with normal or corrected-to-
normal vision and without neurological or psychiatric history
based on self-report. This study was approved by the Beijing
Normal University’s Institutional Review Board. Written informed
consent was obtained from each participant.

Figure 3. Linkage disequilibrium plot. (a), Plot of 68 kb genomic region for imputed SNPs region. Positions of genes, SNPs genotyped in the
HapMap, and linkage disequilibrium among SNPs (r2) are shown. The plot was generated with Haploview (release 21/phase II Jan 06, NCBI B35
assembly, CHB+JPT sample, chr20 start and end kb: 60802–60871). Imputation analysis illustrates that the strongest association signals are localized
to a 24 kb region (chr20 start and end kb: 60821–60846) shown in detail in (b). Imputed SNPs that were statistically associated with working memory
(p,1.261023) are boxed.
doi:10.1371/journal.pone.0017365.g003

Table 2. Imputed SNPs showing statistical associations (p,0.05) with working memory performance.

SNP Position on chr 20 Major allele Minor allele MAFa p value Beta SE Qualityb

rs6062957 60821530 A G 0.29 6.2610204 20.25 0.07 0.99

rs3787535 60823966 G A 0.23 1.1610204 0.30 0.08 1.00

rs2427412 60824580 G T 0.03 4.9610215 22.45 0.25 0.95

rs3827145 60825027 C T 0.19 5.5610205 20.41 0.10 0.91

rs6089930 60829446 A G 0.29 6.3610204 20.26 0.08 0.95

rs6011914 60829796 G C 0.27 4.6610204 0.28 0.08 0.93

rs6011915 60829866 T C 0.26 4.7610204 0.27 0.08 0.95

rs6010969 60829964 A G 0.26 4.6610204 20.27 0.08 0.95

rs2427422 60830418 G A 0.24 1.9610204 0.30 0.08 0.97

rs2427424 60830533 G T 0.24 1.9610204 20.29 0.08 0.98

rs2427427 60834167 G A 0.23 1.8610204 0.31 0.08 0.97

rs3787527 60845495 G A 0.05 1.7610222 2.15 0.14 0.90

aMAF: minor allele frequency.
bQuality: the average posterior probability for the most likely genotype.
doi:10.1371/journal.pone.0017365.t002
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Genotype analysis
A 4 ml venous blood sample was collected from each

participant. After blood samples were collected, genomic DNA
was extracted according to the standard method within 2 weeks.
All samples were genotyped using the standard Illumina

GoldenGate Genotyping protocol (see www.southgene.com.cn
for details). Sixty genes (384 SNPs) involved in neurotransmitter
system were typed in the gene-brain-behavior project. For each
gene, several tag SNPs were selected based on the HapMap data
(www.hapmap.org) to cover these genes using relatively few SNPs.
Of interest to this study, 5 SNPs in NTSR1 gene were selected,
including rs2427399, rs6062460, rs4334545, rs6090453 and
rs6089784. Samples with more than 10% missing calls were
removed (n= 2, including 1 female), resulting in a final sample of
458 for subsequent analyses. All five NTSR1 SNPs passed the
criteria of a call rate of .90%, Minor Allele Frequency (MAF) of
.0.05, and Hardy-Weinberger equilibrium (HWE) of p.0.05.

WM tasks
WM was assessed with a 2-back WM paradigm [49]. Viewing a

series of characters that were presented sequentially, participants
performed three continuous judgment tasks: semantic judgment
(whether the Chinese character on the screen was from the same
semantic category as the character presented two characters
earlier), phonological judgment (whether the current Chinese
character rhymed with the one shown two characters earlier), and
morphemic judgment (whether the current Tibetan letter was the
same as the one presented two letters earlier). Participants did not
know Tibetan letters. Each judgment task consisted of four blocks
(10 trials each). Before the judgment tasks, participants had a
practice block (judging small circles and squares), in which they
had to pass 70% of trials before they could take the formal tests.
Cronbach alpha in this sample was .82. The average score
(accuracy) of the three WM tasks was used as the index of working
memory in the current study [50].

Data Analysis
Genotype was encoded as minor allele SNP-dosage (homozy-

gote of major allele = 0, heterozygote = 1, homozygote of minor
allele = 2). In a preliminary analysis, five separate two-way

ANOVAs were conducted to test the effects of gender, each SNP,
and their interaction on WM task performance. Results showed
that the main effects of gender were non-significant (all ps.0.05),
so we excluded gender as an independent factor in the final
ANOVA analysis. Finally, five ANOVAs were conducted
separately for each SNP to test the main effect of each SNP. To
correct for multiple comparisons, the statistical significance level of
these ANOVAs was set as p,0.01 (0.05/5[SNP variants], i.e.,
Bonferroni correction for family-wise error). For those SNPs that
passed the significance level, Fisher’s least significant difference
(LSD) post hoc tests (t-tests) were carried out to identify the direction
of each effect. The post hoc tests were also corrected for multiple
comparisons using the Bonforroni method. All statistical calcula-
tions were carried out in SPSS for windows (Release 15.0).
As an additional exploratory analysis, genotypes were imputed

for all ungenotyped SNPs within candidate SNP regions in our
study (68 kb, covering the NTSR1 gene), using IMPUTE2
[51,52](https://mathgen.stats.ox.ac.uk/impute/impute_v2.html),
based on the information from the five directly typed SNPs and
the HapMap database (HapMap Data Rel 21/phase II,
population: Japanese/Chinese). For these imputed data, associa-
tion analysis was done with SNPTEST2 [53,54](http://www.stats.
ox.ac.uk/,marchini/software/gwas/snptest.html).
Only SNPs with a MAF larger than 1% and with a posterior-

probability score of 0.90 or higher were considered for these
imputed association analyses [52,54]. Statistical significance level
was defined as p,1.261023 (0.05/43[imputed SNPs]) to adjust
for multiple comparisons.
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