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A B S T R A C T

Although human memories seem unique to each individual, they are shared to a great extent across individuals. Previous studies have examined, separately, subject-
specific and cross-subject shared representations during memory encoding and retrieval, but how shared memories are formed from individually encoded repre-
sentations is not clearly understood. Using a unique fMRI design involving memory encoding and retrieval, and representational similarity analysis to link repre-
sentations from different individuals, brain regions, and processing stages, the current study revealed that distributed brain regions showed both subject-specific and
shared neural representations during both memory encoding and retrieval. Furthermore, different brain regions showed stage-specific representational strength, with
the visual cortex showing greater unique and shared representations during encoding, whereas the left angular gyrus showing greater unique and shared represen-
tations during retrieval. The neural representations during encoding were transformed during retrieval, as shown by smaller cross-subject encoding-retrieval similarity
(ERS) than cross-subject similarity either during encoding or during retrieval. This cross-subject and cross-stage similarity was found both within and across regions,
with strong pattern similarity between the encoded representation in VVC and the retrieved representation in the angular gyrus. Simulation analysis further suggested
that these patterns could be achieved by incorporating stage-specific representational strength, and cross-region reinstatement from encoding to retrieval, but not by a
common transformation from encoding to retrieval across subjects. Together, our results shed light on how memory representations are encoded and transformed to
maintain individual characteristics and at the same time to create shared representations to facilitate interpersonal communication.
1. Introduction

Theoretical discussions and behavioral studies have long considered
memory as personal experiences that are unique to each individual. This
intuitive perspective is also supported by empirical evidence. Previous
studies, including neural imaging studies, have found that in response to
the same stimuli and task instruction, subjects showed significant indi-
vidual variances regarding howmany items, which items, and the precise
details associated with each item that can be remembered (Kirchhoff,
2009; Loftus et al., 1992; Miller et al., 2002; Munday, 1985; Shapiro and
Penrod, 1986).

Nevertheless, memory is also shared across individuals, forming
strong collective memory at different levels (Hasson et al., 2004, 2008;
J€a€askel€ainen et al., 2008; Wilson et al., 2008). Supporting the notion of
shared memory experience, existing studies revealed shared neural rep-
resentations (i.e., the distributed pattern of neural activities associated
with given stimuli (Vilarroya, 2017)) during memory retrieval. For
example, Chen et al. (2017) reported that after viewing the same movie,
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the cross-subject similarity of the neural activity during free recall of the
movie details was significantly above the baseline (Chen et al., 2017). In
another study, Zadbood et al. (2017) examined how memories trans-
mitted from one person to another person and found shared response
patterns across participants when watching, recalling, and listening to
spoken descriptions of movie scenes (Zadbood et al., 2017).

Other studies have also reported unique and shared representations in
perception (Golland et al., 2007; Hasson et al., 2004, 2010; J€a€askel€ainen
et al., 2008; Kauppi et al., 2010) and semantic processing (Chadwick
et al., 2016; Charest et al., 2014; Huth et al., 2016; Wilson et al., 2008).
Moreover, individual participants’ neural organization of semantic
memory was found to better predict their episodic memory performance
than would the group-averaged memory representations (Chadwick
et al., 2016).

The above studies, however, did not simultaneously examine the
unique and shared representations within and across processing stages
and brain regions, leaving several important questions unaddressed.
First, are the retrieved representations more likely to be shared than are
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the encoded representations, or vice versa? It is conceivable that the
encoded representations might be shared to a greater extent because
subjects perceive the same stimulus whereas the retrieved representa-
tions are more subjective and uncontrollable. Alternatively, it is also
possible that the encoded representations are more unique because of
their high fidelity, whereas the retrieved representations are more ab-
stract and hence are probably more likely to be shared by subjects.

Second, although memory retrieval involves the reinstatement of
perceived representations, this pattern of reinstatement is a constructive
process (Schacter et al., 1998; for a review, see Xue, 2018). The question
thus is how representations are transformed from encoding to retrieval
and is the transformation process similar across subjects? Memory
transformation can be characterized by the change in representational
content or format, as reflected by the reduced pattern similarity within
brain regions between encoding and retrieval, as well as by the shift in
brain regions that showing item-specific representations between the two
memory stages, given that different brain regions contain different as-
pects of the representations. For example, in our previous study (Xiao
et al., 2017), we found that during encoding the visual cortex showed
strong item-specific representations, but during retrieval higher-level
brain regions such as the angular gyrus showed strong item-specific
representations. Existing studies have shown that the representation in
the VVC contains perceptual details, whereas that in the AG is
identity-specific and invariant to viewpoints (Jeong and Xu, 2016), and is
modulated by semantic similarity (Ye et al., 2016). These results thus
suggest a change in representational format between encoding and
retrieval.

Furthermore, we compared the encoding-retrieval similarity (i.e.,
ERS) with pattern similarity during encoding (i.e., encoding-encoding
similarity, EES) and retrieval (retrieval-retrieval similarity, RRS) (Xiao
et al., 2017). The results revealed that the ERS was smaller than EES in
the ventral visual cortex (VVC) and RRS in angular gyrus (AG), sug-
gesting that the neural representational patterns during retrieval were
transformed from those during encoding. In light of this stage-specific
representations, we further tested and verified the hypothesis that the
encoded representation in the VVC could be transformed and reinstated
Fig. 1. Experiment paradigm and diagram of analytical strategies. A. Each picture wa
pictures in set 1 were exchanged with the same pictures in set 2 to form two new pictu
representational space; For each subject, we generated the representational spaces se
representational space was calculated as the correlations between each target’s neural
correlation coefficients in the upper triangle were used so only one correlation coeffic
representational spaces was calculated within and across subjects. Using the averaged
stages, brain regions, and individuals.
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in associative regions such as the angular gyrus, suggesting possible
cross-region reinstatement of memory representations (Xiao et al., 2017).

Besides the within-subject transformation, another study by Chen
et al. (2017) compared the cross-subject similarity in retrieval (i.e., RRS)
with cross-subject encoding-retrieval similarity (ERS). They found
greater cross-subject RRS than cross-subject ERS, again suggesting that
the encoded representation was transformed into common representa-
tions shared by different individuals during retrieval. Their simulation
analysis suggested that this pattern could be achieved via a common
transformation from encoding to retrieval across subjects (Chen et al.,
2017). Nevertheless, this shared transformation can conceivably result in
greater shared representation during retrieval than encoding, but this
possibility was not examined in that study. In addition, the mechanism
for this shared representation during retrieval is not clear.

The present study examined subject-specific and shared episodic
memory representations during encoding and retrieval. Furthermore, we
examined whether the two types of memory transformation, i.e., within-
region memory transformation and cross-region memory reinstatement,
were shared by all subjects or were specific to each individual. We
adopted a design where subjects were required to study and retrieve
word-picture associations. Importantly, each picture was associated with
two different cues in separate runs. To capture the individual-specific and
shared episodic memory representations, we generated for each subject
two representational similarity matrices (RSMs) (Kriegeskorte et al.,
2008) for encoding, and two matrices for retrieval, each containing one
repetition of the pictures. These RSMs allowed us to compare the rep-
resentations across processing stages, brain regions, and subjects (Fig. 1),
and at the same time to overcome the anatomical differences between
subjects and brain regions (Chen et al., 2017). To examine the
within-region memory transformation, we compared cross-subject ERS
with cross-subject EES and cross-subject RRS. To examine the
cross-region memory transformation, we examined whether there was
significant above-chance cross-subject, cross-region ERS. Finally, we
conducted simulations to investigate whether the shared representations
during retrieval were a result of a common transformation, or through
stage-specific representation and cross-region memory transformation.
s used twice and paired with two different word cues (set 1 and set 2). Half of the
re sets containing the same pictures arranged in the same order. B. Calculation of
parately for the two data sets by processing stage (encoding and retrieval). The
spatial pattern and that for each of other targets from the same data set. Only the
ient for each pair of materials was used. The similarity (Pearson correlation) for
representational similarity matrix, we calculated the similarity across processing
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2. Materials and methods

2.1. Subjects and experiment design

Detailed information regarding the subjects, experimental design,
behavioral data analysis, and functional magnetic resonance imaging
(MRI) data preprocessing can be found in our previously published paper
(Xiao et al., 2017). Briefly, 20 healthy subjects (11 males, mean age ¼
20.95 � 1.96 years, range of 18–25 years) participated in this study.
Informed written consent was obtained from the participants before the
experiments. The fMRI study was approved by the institutional review
board of Peking University and the State Key Laboratory of Cognitive
Neuroscience and Learning at Beijing Normal University in China.

Subjects studied and retrieved 96 word-picture pairs. Pictures were
48 well-known scenes, including 32 architectures (half from China and
the other half from abroad) and 16 natural landscapes (half depicting
water landscapes and the other half depicting terrestrial landscapes). The
cues were 96 two-character Chinese verbs. Each picture was associated
with two different word cues (cue 1 and cue 2). Words and pictures were
randomly paired across subjects.

One day before the fMRI scan, subjects were trained to be familiar
with all pictures and then to memorize all 96 word-picture associations.
The overtraining paradigm was used to make sure subjects could recall
the visual details of the pictures during retrieval. It included three stages:
picture familiarization, self-paced word-picture association learning, and
recall. The training ended once subjects could correctly report the cate-
gory and four details of the picture associated with each cue. Subjects
spent about 2 h in this session.

During the fMRI scan, subjects were asked to restudy the word cue-
picture pairs (the encoding run) and then to recall the visual details of
the pictures associated with the word cues (the retrieval run) (Fig. 1A). A
slow event-related design (16 s for each trial) was used to obtain better
estimates of single-trial BOLD responses for both encoding and retrieval.
During encoding, each trial started with 4 s presentation of the word cue-
picture association, and subjects were asked to try to remember as many
details as they could (i.e., the encoding stage). The frame of the picture
then turned green for 2 s (i.e., the category judgment stage), during
which subjects were asked to judge the category of the picture but held
their response until the frame turned red and the response labels showed
on the screen. The response labels representing the four possible picture
categories, i.e., domestic architectures, foreign architectures, water
landscapes, and terrestrial landscapes, were introduced to prevent sub-
jects from planning motor response during the category judgment stage.
Specifically, each response key/button corresponded to one of the four
label locations (lined up from left to right) instead of the picture category,
and the order of the four category labels presented on the screen was
randomized across trials. Subjects had another 2 s to make the response
(i.e., the response stage) according to the response labels. To prevent
further processing of the word cue-picture association, subjects were
asked to do a perceptual orientation judgment task for 8 s. During this
task, an arrow pointing either left or right was presented on the screen,
and subjects were asked to judge the orientation of the arrow as quickly
as possible. A self-paced procedure was used to make the task engaging.

The retrieval stage was similar to the encoding stage, except that, for
the first 4 s, only the retrieval cue was presented, and subjects were asked
to retrieve the visual details of the associated picture (Fig. 1A). For both
the encoding and retrieval stages, subjects were told explicitly to focus on
the details rather than simply the category of the pictures. The 48 pic-
tures were divided into two groups (to keep the scanning time of each run
within 7 min). For each group, each picture was paired with cue set 1 in
one encoding-retrieval session and then with cue set 2 in the next session.
In each run, the word-picture pairs were presented in random order. In
total, there were four encoding-retrieval sessions.

After the scan, subjects finished an oral test outside the scanner to
report the details of the picture associated with each cue. Pictures
correctly recalled with more than four different kinds of details (e.g.,
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objects in the scene, color, structure, name, and so on) were scored as
remembered with details.
2.2. fMRI image data acquisition and preprocessing

Scanning was carried out in the MRI Center at Peking University,
using a MAGNETOM Prisma 3.0T MRI scanner (Siemens Healthcare,
Erlangen, Germany) with a 64-channel head-neck coil. High-resolution
functional images were acquired using a prototypical simultaneous
multi-slice EPI sequence (FOV¼ 224 mm * 224 mm; matrix¼ 112 * 112;
slice thickness ¼ 2 mm; TR/TE/θ ¼ 2000 ms/30 ms/90�, slice acceler-
ation factor ¼ 2). Sixty-four contiguous axial slices parallel to the AC-PC
line were obtained to cover the whole cerebrum and partial cerebellum.
High-resolution structural images using a three-dimensional, T1-
weighted, magnetization-prepared rapid gradient-echo (MPRAGE)
sequence were acquired for the whole brain (FOV ¼ 256 mm * 256 mm;
matrix ¼ 256 * 256; slice thickness ¼ 1 mm; TR/TE/θ ¼ 2530 ms/2.98
ms/7�). A high-resolution T2-weighed image was also acquired using a
T2-SPACE sequence for use in MTL segmentation. The image plane was
perpendicular to the main hippocampal axis and covered the whole MTL
region (FOV ¼ 220 mm * 220 mm; matrix ¼ 512 * 512; slice thickness ¼
1.5 mm; TR/TE/θ ¼ 13150 ms/82.ms/150�, 60 slices).

Image preprocessing and statistical analyses were carried out using
FEAT (FMRI Expert Analysis Tool) version 5.98. The first 10 images
from each run were automatically discarded by the scanner to allow
scanner equilibrium. Functional images were realigned, and temporally
filtered (nonlinear high pass filter with a 90s cut-off). The EPI images
were first registered to the first volume of the fifth run and then
registered to the MPRAGE structural volume using Advanced Normal-
ization Tools (ANTs) (Avants et al., 2011). Registration from structural
images to the standard space was further refined using ANTs nonlinear
registration SyN (Klein et al., 2009). All fMRI analyses were performed
in each subject’s native space and then transformed into standard space
for group analysis.
2.3. Single-trial response estimate

The GLM models were separately created for each of the 96
encoding and retrieval trials to estimate the single-trial response. A
least-square single method was used, where the target trial was
modeled as one experimental variable (EV), and all other trials were
modeled as another EV (Mumford et al., 2012). The trial was modeled
at its presentation time, convolved with a canonical hemodynamic
response function (double gamma). The whole first 4 s were modeled
during both encoding and retrieval for each trial. The t-statistic was
used for representation similarity analysis to increase the reliability by
noise normalization (Walther et al., 2016).
2.4. Region of interests (ROI) definition

Following previous studies and our previous findings, 8 ROIs were
defined based on the Harvard-Oxford probabilistic atlas (threshold at
25% probability), including the bilateral ventral visual cortex (VVC,
containing ventral lateral occipital cortex, occipital fusiform, occipital
temporal fusiform, and parahippocampus) (Danker et al., 2017; Wing
et al., 2015), angular gyrus (AG) (Kuhl and Chun, 2014), the inferior
frontal cortex (IFG) (Ritchey et al., 2013), medial prefrontal cortex
(mPFC) (Guise and Shapiro, 2017), and posterior medial cortex (PMC)
(Chen et al., 2017) (Fig. 2A). The hippocampus was not included, as we
did not find item-specific representation in this region in our previous
study (Xiao et al., 2017). These regions have been consistently involved
in memory encoding and retrieval. All ROIs were defined in MNI space,
and then were realigned to each subject’s native anatomical space.



Fig. 2. Shared representational patterns. A. The location of the pre-defined anatomic ROIs. B. Cross-subject representational similarity for encoding and retrieval,
using averaged RSMs. Error bars indicate the within-subject error. ***q < 0.001, **q < 0.01, *q < 0.05.
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2.5. Representational space construction

To compare the within-vs. cross-subject memory representations, it is
not sufficient to directly contrast a stimulus’s within-subject similarity
with its cross-subject similarity due to finer differences in anatomical
structure (Chen et al., 2017), as well as the differences in
structure-function mapping between subjects (i.e., the same function
might be localized in different voxels within a region for different in-
dividuals). This issue can be ameliorated by comparing the similarity in
the representational space, which relies on the second-order similarity.
The representational space, namely representational similarity matrix
(RSM), is the pairwise pattern correlations for all stimuli in a given brain
region. Use the RSM, we could calculate the representational similarities
within and between memory stages (e.g., encoding-encoding similarity,
retrieval-retrieval similarity, and encoding-retrieval similarity), between
brain regions (e.g., cross-region similarity), and across individuals (e.g.,
cross-subject similarity).

Since each of the 48 pictures was associated with two cues during
encoding and retrieval, this design enabled us to construct, for each
subject, two RSMs for both encoding and retrieval. This enabled us to
compare the within-subject similarity and cross-subject similarity during
encoding and retrieval (Fig. 1). Due to the autocorrelation of BOLD
signal, the similarity of activation pattern between two stimuli might be
affected by their temporal distance within a scan session. As a result, the
RSM for a given set would be affected by the temporal sequences of the
stimuli, which varied between the two sets within a subject as well as
across subjects. To overcome this issue, we did a resampling procedure
by randomly switching half of the stimuli between set 1 and set 2. Spe-
cifically, each time we randomly selected half of the stimuli from set 1
and the other half from set 2 to form one RSM, and used the remaining
stimuli to form another RSM. Each “exchanged” RSM included a full set
of the pictures, which were arranged in the same order. The within-
subject similarity was calculated by correlating the two exchanged
RSMs from the same subject. The cross-subject similarity was calculated
by correlating a given subject’s RSM with the RSMs from each of the
remaining 19 subjects. These 19 similarities were averaged to represent
one subject’s cross-subject similarity (Fig. 1). The procedure was
repeated 1000 times and the results were averaged to obtain more
4

reliable results. We then compared the within-vs. cross-subject pattern
similarity.

Meanwhile, as each exchanged RSM was noisy, we also averaged
1000 RSMs to form an averaged RSM, separately for each individual at
each memory stage (encoding and retrieval). As indicated by Fig S2,
within-subject similarity increased after averaging the original noisy
RSMs, and reached the maximum similarity of 1 after averaging around
400 noisy RSMs. As a result, we could only use the unaveraged, noisy
RSMs to compare within- and cross-subject similarity during encoding
and retrieval. When examining the shared representation during encod-
ing and retrieval, and comparing the cross-stage and cross-region simi-
larity between within-vs. cross-subject, the averaged RSMs were used for
three reasons. First, compared to the individual RSMs, the averaged
RSMs were more reliable and less noisy and were less affected by stim-
ulus sequence and BOLD autocorrelation. Second, the averaged RSMs
had a higher statistical power to detect the possible shared representation
across subjects during encoding and retrieval, if there was any. Third, it
was more feasible to do the permutation test on the averaged RSMs than
on the individual RSMs from 1000 permutations on each of the 1000
shuffles when the noisy RSMs were used.
2.6. Representational similarities analysis

Three types of similarity (Pearson correlation) in RSM were calcu-
lated within each subject: between the two sets of stimuli during
encoding, between the same two sets of stimuli during retrieval, and
between encoding and retrieval for both sets of stimuli (Fig. 1B). Cor-
responding to the three types of within-subject similarity in RSM, we
calculated three types of cross-subject similarity in RSM, i.e., cross-
subject similarity during encoding, during retrieval, and between
encoding and retrieval (i.e., ERS). The cross-subject representational
similarity for a given subject was obtained by calculating the similarity
between the subject’s RSM and each of the 19 other subjects’ RSM
(Fig. 1B), which was then averaged. As stated above, to compare within-
and cross-subject representational similarity, the correlation analysis was
done on each of the 1000 unaveraged noisy RSMs, and the results were
obtained by averaging the 1000 correlations. To examine the degree of
shared representations, we used the averaged RSM from the 1000
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shuffles. All r values were then transformed into Fisher’s Z scores for
further analysis.

To examine the cross-region and cross-stage pattern reinstatement
(Xiao et al., 2017), we also calculated the similarity between RSM in VVC
during encoding and RSM in the mPFC and AG during retrieval. This was
done both within and across subjects, using the averaged RSM.
2.7. Permutation test of significance

We used a permutation test to determine statistical significance. In
particular, we examined (1) whether there were significant shared rep-
resentations during encoding and retrieval, and between encoding and
retrieval, and (2) whether there was significant within-subject pattern
reinstatement during retrieval. To test the significance of shared repre-
sentations (cross-subject similarity) during encoding or retrieval, we
randomly shuffled the labels of the pictures and generated an RSM based
on the shuffled picture labels, which was then correlated with the orig-
inal RSM from each of the remaining 19 subjects. The results were
averaged to generate one cross-subject similarity for each shuffle. This
was done 1000 times, and the mean was used as the baseline for this
subject. When this was done for all subjects, a paired sample t-test was
conducted between the similarities of the original RSM and the baseline.
To test the within-subject pattern reinstatement, we examined the sig-
nificance of within-subject ERS. The baseline was obtained by the cor-
relation between the shuffled RSM during encoding and the original RSM
during retrieval from the same subject.

We also used the permutation test to examine (3) whether there was
subject-specific representation, by comparing within-vs. cross-subject
representations. In this analysis, we randomly permuted the labels of
within/cross-subject similarity for 1000 times. For each permutation, a
difference value between within- and cross-subject similarity was
calculated. We then constructed a null distribution of the differences
based on the 1000 permutations, and used this distribution to determine
the p-value of within-vs. cross-subject comparison. The statistical sig-
nificance was also corrected for multiple comparisons across all com-
parisons using FDR (threshold q ¼ .05).
2.8. Simulation study

To further investigate the nature of memory transformation, we used
simulation to examine the relative contributions of the following factors
to memory transformation: (1) stage-specific strength of representation,
because different brain regions are involved to a different extent during
encoding and retrieval (e.g. greater representational strength in the VVC
during encoding and greater representational strength in the AG during
retrieval) (Xiao et al., 2017); (2) shared memory transformation (by
adding a common random pattern across subjects to their encoding
patterns) (Chen et al., 2017); and (3) cross-region reinstatement (by
adding the encoded pattern from another brain region). Please note that
this encoded pattern from another brain region was both idiosyncratic to
each subject and shared across subjects according to our experimental
results.

Following Chen et al., we simulated neural activation patterns (125
features each) for five subjects, each containing two brain regions, using
the following equation:

P_encoding ¼ (subject-shared pattern þ subject-specific pattern * k_specific þ
region-specific pattern * k_region) *k_strength_encoding þ random noise

Subject-shared patterns were constructed by creating five identical
125-element/voxel random vectors, whereas the subject-specific patterns
were five unique 125-voxel random patterns. The strength of the subject-
specific pattern was controlled by k_specific. The region-specific pattern
was a 125-voxel random pattern shared by subjects, whose strength was
controlled by k_region. The k_strength_encoding indicates stage-specific
representational strength during encoding. The random noise is also a
5

125-voxel random pattern unique to each subject. The strength of the
random noise was controlled by the “noise strength factor” (k_noise).

During retrieval, we assumed two mechanisms, including a common
transformation pattern shared by subjects, and cross-region trans-
formation, so the pattern during retrieval was:

P_retrieval ¼ (P_encoding þ common_pattern * k_trans_shared þ P_enco-
ding(other_region) *k_CR) *k_strength_retrieval þ random noise

Where k_ trans_shared indicates common transformation patterns shared
by subjects and k_CR indicates cross-region transformation. k_streng-
th_retrieval here indicates stage-specific representational strength during
retrieval.

We systematically varied the following parameters: (1) stage-specific
strength of representation during encoding and retrieval (k_strength_-
encoding/retrieval, ranged from 0 to 1, 4 steps, with smaller values
indicating weaker representation, e.g., the AG during encoding and VVC
during retrieval); (2) the extent of common transformation shared by
subjects (k_trans_shared, ranged from 0 to 1, 4 steps, with bigger values
indicating stronger shared transformation and 0 representing no shared
transformation); (3) the extent of cross-region reinstatement (k_CR,
ranging from 0 to 1, 4 steps, with bigger values representing stronger
cross-region reinstatement and 0 representing no cross-region reinstate-
ment); (4) the strength of the random noise (K_noise, ranging from 1 to 4,
3 steps, with bigger values indicating stronger random noise).

Please note that for some parameters, such as subject-specific and
region-specific representations and noise strength factor, we initially
tried a wide range of values, and narrowed down to one value (i.e., 0.6
for subject-specific and region-specific representation, and 4 for noise
strength factor) for each parameter to achieve the best match with the
experimental data. To reduce the complexity of the results, we only re-
ported results using that value to demonstrate the effect of these factors.
As shown in supplementary results, the selection of different values only
affected the absolute similarity values, not the overall pattern of results
across conditions. For the four critical parameters, stage-specific strength
of representation during encoding and retrieval (k_strength_encoding/
retrieval), strength of common (k_trans_shared) and cross-stage (k_CR)
transformation, we chose relatively finer steps. The simulation was done
1000 times. For each simulation, we calculated within- and cross-subject
similarity during encoding and retrieval, within- and cross-subject
encoding-retrieval similarity (ERS), and cross-region ERS.

Code and data availability. The code and data supporting the
findings of this study are available from the corresponding author upon
request, with a formal data-sharing agreement.

3. Results

3.1. Item-level vs. representational space level similarity

Subjects performed very well during the memory test in the scanner
(hits 94.3 � 5.1%). The post-scan test further showed that subjects could
correctly report more than four details associated with each retrieved
picture. Together, the behavioral results suggest that overtraining before
the scan was effective.

In our previous study (Xiao et al., 2017), item-specific memory rep-
resentation was calculated by examining the pattern similarity between
each pair of stimuli sharing the same visual pictures but different cues
(i.e., first-order similarity). In the current study, to facilitate within-vs.
cross-subject comparison, we examined the item-specific representation
by examining the similarity between two representational similarity
matrices (RSMs) consisting of identical set of pictures (i.e., second-order
similarity). Due to the autocorrelation of BOLD signal, the similarity of
activation patterns between two stimuli was affected by their temporal
distance within a scan session. We thus shuffled the data by randomly
switching half of the stimuli between set 1 and set 2. Within- and
cross-subject similarities were then calculated using these exchanged,
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and noisy RSMs. As shown in Fig S1, after around 800 exchanges, the
averaged within-subject similarity became stable. To be conservative, we
used the results based on the average of 1000 exchanges for subsequent
statistical analyses. To validate this second-order analysis, we directly
compared the results of first-order similarity and second-order similarity.
We found that the overall patterns were quite similar, suggesting that
both measures could reliably capture the item-specific neural represen-
tations (Fig S3).

In our first analysis, we tested whether within-subject similarity (the
second-order similarity) was significant above baseline during encoding
and retrieval, using the noisy, unaveraged RSMs. We found significant
within-subject similarity in the LVVC (t(19)¼ 4.823, q< 0.001,with FDR
correction), RVVC (t(19) ¼ 5.032, q < 0.001), LIFG (t(19) ¼ 3.010, q ¼
0.012), mPFC (t(19) ¼ 3.074, q ¼ 0.008) and PMC (t(19) ¼ 2.871, q ¼
0.020) during encoding, and in the LAG (t(19)¼ 3.202, q ¼ 0.008), LIFG
(t(19) ¼ 4.274, q < 0.001), mPFC (t(19) ¼ 4.409, q < 0.001) and PMC
(t(19) ¼ 3.294, q ¼ 0.005) during retrieval (Fig S3).
3.2. Shared representations during encoding and retrieval

We then examined whether there were shared representations during
memory encoding and retrieval, using the stable, averaged RSMs (see
Methods, Fig S2). During encoding, cross-subject representational simi-
larity was significantly greater than baseline in the LVVC (t(19) ¼ 9.601,
q < 0.001), RVVC (t(19) ¼ 9.789, q < 0.001), RAG (t(19) ¼ 2.853, q ¼
0.041), LIFG (t(19) ¼ 4.53, q < 0.001), RIFG (t(19) ¼ 2.954, q ¼ 0.022),
mPFC (t(19) ¼ 5.872, q < 0.001) and PMC (t(19) ¼ 8.27, q < 0.001).
During retrieval, significant cross-subject representational similarity was
found in the LVVC (t(19) ¼ 5.745, q < 0.001), RVVC (t(19) ¼ 5.328, q <

0.001), LAG (t(19) ¼ 4.531, q < 0.001), LIFG(t(19) ¼ 3.813, q ¼ 0.005),
RIFG (t(19) ¼ 5.083, q < 0.001), mPFC (t(19) ¼ 8.368, q < 0.001) and
PMC (t(19) ¼ 7.079, q < 0.001) (Fig. 2B).

Although we found shared representations during both encoding and
retrieval, different ROIs showed different patterns: the RAG and LAG only
Fig. 3. Comparing the within-subject with cross-subject representational similarities d
noisy RSMs, and then averaged across 1000 exchanges. Error bars indicate the with
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showed shared representations during encoding and retrieval, respec-
tively, whereas the VVC, LIFG, RIFG, mPFC, and PMC showed shared
representations during both encoding and retrieval. Direct comparisons
showed that cross-subject similarity was significantly greater during
encoding than that during retrieval in the LVVC (F(1,19) ¼ 39.298, q <

0.001) and RVVC (F(1,19) ¼ 57.047, q < 0.001), whereas it was greater
during retrieval than that during encoding in LAG (F(1,19) ¼ 7.148, q ¼
0.024) and mPFC (F(1,19) ¼ 7.231, q ¼ 0.019)(Fig. 2B). These findings
suggest that there were shared representations during both memory
encoding and retrieval, but in different regions.
3.3. Comparing shared and individual-specific representations during
encoding and retrieval

Having revealed both subject-specific and shared representations
during encoding and retrieval, we then examined whether there was
greater subject-specific than shared representations. In this analysis,
within- and cross-subject similarities were calculated using the noisy,
unaveraged RSMs. This was done on 1000 exchanged RSMs (between set
1 and set 2) and the results were averaged.

During encoding, within-subject similarity was significantly greater
than cross-subject similarity in the LVVC (t(19) ¼ 2.828, q ¼ 0.029),
RVVC (t(19)¼ 2.663, q¼ 0.030), LIFG (t(19)¼ 2.453, q¼ 0.038), mPFC
(t(19) ¼ 3.140, q ¼ 0.029), and PMC (t(19) ¼ 2.803, q ¼ 0.029). During
retrieval, significant subject-specific representation was found in the LAG
(t(19)¼ 2.891, q¼ 0.018), LIFG (t(19)¼ 3.697, q¼ 0.008), mPFC (t(19)
¼ 4.388, q < 0.001) and PMC (t(19) ¼ 3.338, q ¼ 0.008) (Fig. 3). To
further examine whether the subject-specific representation was modu-
lated by processing stage, we conducted subject-specificity (within-vs.
cross-subject similarity) by stage (encoding vs. retrieval) ANOVA, sepa-
rately for each ROI. This analysis only revealed a marginally significant
interaction in the PMC (F(1,19) ¼ 3.396, p ¼ .081), indicating stronger
subject-specific representation during retrieval than that during encod-
ing in the PMC.
uring encoding and retrieval, which were calculated using the 1000 unaveraged,
in-subject error. ***q < 0.001, **q < 0.01, *q < 0.05.



X. Xiao et al. NeuroImage 217 (2020) 116909
3.4. Subject-specific and shared pattern reinstatement during memory
retrieval

The above analyses revealed both shared and subject-specific repre-
sentations during encoding and retrieval. Existing studies suggest that
the encoded representation might be reinstated during retrieval, showing
significant item-specific encoding-retrieval similarity (ERS) (Xiao et al.,
2017). This pattern reinstatement has also been found across subjects, as
revealed by the significant cross-subject ERS (Chen et al., 2017).
Nevertheless, it is still unknown whether there is a subject-specific
pattern reinstatement.

To investigate this question, we calculated both within- and cross-
subject ERS, using averaged RSMs. We found that all regions showed
significant within- and cross-subject ERS compared with baseline (all qs
< 0.024, corrected for multiple comparisons), except for the RVVC, LAG,
RAG and RIFG, which did not show significant within-subject ERS
(RVVC: t(19) ¼ 2.210, q ¼ 0.079; LAG: t(19) ¼ 1.759, p ¼ .095; RAG:
t(19) ¼ 2.036, p ¼ .056, uncorrected; RIFG: t(19) ¼ 1.136, p ¼ .270).
Interestingly, although within-subject ERS was numerically greater than
cross-subject ERS, the direct comparison revealed no significant differ-
ences (all ps> .08, without correction for multiple comparisons) (Fig. 4).
These results thus suggest strong shared pattern reinstatement across
subjects, but no evidence for subject-specific reinstatement, which is
consistent with a previous study which revealed that the within-subject
ERS was only slightly greater than cross-subject ERS (with two voxels
in temporoparietal junction surviving correction) (Chen et al., 2017).
3.5. Shared within-region memory transformation from encoding to
retrieval

The lack of subject-specific reinstatement might be due to overall
weak ERS, as a result of memory transformation (Xiao et al., 2017), as
well as shared memory transformation across-subject (Chen et al., 2017).
For example, there was greater pattern similarity during encoding (i.e.,
encoding-encoding similarity, EES) and retrieval (i.e., retrieval-retrieval
similarity, RRS) than the similarity between encoding and retrieval (ERS)
(Xiao et al., 2017). Furthermore, there was greater a cross-subject RRS
than cross-subject ERS (Chen et al., 2017).

To examine the shared representational transformation from encod-
ing to retrieval in our study, we compared cross-subject ERS with cross-
subject similarity during encoding and retrieval. We found that cross-
subject ERS was smaller than cross-subject EES in the VVC (LVVC:
F(1,19) ¼ 42.097, q < 0.001; RVVC: F(1,19) ¼ 46.876, q < 0.001).
Meanwhile, cross-subject ERS was also marginally smaller than cross-
subject RRS in the LAG (F(1,19) ¼ 3.07, q ¼ 0.096) (Fig. 4). This
Fig. 4. Comparison of cross-subject ERS, encoding similarity, retrieval similarity, and
***q < 0.001, **q < 0.01, *q < 0.05.
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evidence indicates that the representational patterns might be trans-
formed in a systematic way across subjects from encoding to retrieval in
VVC and LAG. Together, although using very different designs and ma-
terials, our results showed a similar pattern with previous studies (Chen
et al., 2017; Zadbood et al., 2017).

3.6. Subject-specific and shared cross-region pattern reinstatement

Representational reinstatement not only occurs within a brain region,
but also across regions, such that the encoded representation in one re-
gion is reinstated in a different region during retrieval (Xiao et al., 2017),
due to their differential roles in memory encoding and retrieval (See
Introduction). It is still unclear whether cross-region reinstatement can
be found across subjects.

When examining the shared representation, the current study found
interesting dissociations in brain regions showing shared representations
during encoding and retrieval: the bilateral VVC showed stronger shared
representations during encoding, while the mPFC and LAG showed
stronger shared representations during retrieval. These results led to the
following questions:Was the encoded representation in VVC reinstated in
mPFC and LAG during retrieval? If so, was this cross-region reinstate-
ment unique to each individual or shared across subjects?

By examining the cross-subject, cross-region, and cross-stage simi-
larity (e.g., sub1, VVC-encoding with sub2, mPFC-retrieval), we found
significant cross-subject correlations between encoded RSM in VVC and
retrieved RSM in mPFC (LVVC-mPFC: t(19) ¼ 3.882, q ¼ 0.001; RVVC-
mPFC: t(19) ¼ 3.941, q ¼ 0.001), as well in LAG (LVVC-LAG: t(19) ¼
2.963, q ¼ 0.016; RVVC-LAG: t(19) ¼ 2.867, q ¼ 0.040) (Fig. 5), which
indicates that the information in bilateral VVC during encoding might be
reinstated in LAG andmPFC during retrieval. Interestingly, we found that
the within-region ERS in LVVC and RVVC was comparable to the VVC-
LAG ERS, both within (LVVC: t(19) ¼ �0.256, p ¼ .800; RVVC: t(19)
¼ 0.489, p ¼ .631) and across subjects (LVVC: t(19) ¼ - 1.396, p ¼ .179;
RVVC: t(19)¼�1.689, p¼ .107), which suggests comparable strength of
within-region and cross-region reinstatement. The within-subject RVVC-
LAG reinstatement was greater than that for across subjects (t(19) ¼
2.066, q ¼ 0.05), suggesting individual-specific cross-region reinstate-
ment (Fig. 5).

3.7. Simulation analysis to examine the mechanisms of memory
transformation

The above analysis revealed several important features regarding
shared and subject-specific representations, as well as memory trans-
formations across memory stages and brain regions. First, we found that
within-subject ERS, using the averaged RSMs. Error bars indicate standard error.



Fig. 5. Comparing within-vs. cross-subject reinstatement, from LVVC (left panel) and RVVC (right panel) to ipsilateral VVC, LAG, RAG and mPFC. Error bars indicate
the within-subject error. ***q < 0.001, **q < 0.01, *q � 0.05.

Fig. 6. Simulation results. The top row (A) shows the result when no stage-specific representation strength was introduced for VVC and AG, in this case, the rep-
resentation patterns of VVC and AG were the same. The bottom two rows (B & C) show the results when stage-specific representation strength was included (for AG:
k_strength_encoding ¼ 0.5, k_strength_retrieval ¼ 1; for VVC: k_strength_encoding ¼ 1, k_strength_retrieval ¼ 0.5). Each plot shows pattern similarity as a function of
shared within-region transformation across subjects (k_trans_shared, varying from 0 to 1, with 4 steps). The five panels from left to right show the results with different
levels of cross-region reinstatement (k_CR, varying from 0 to 1, with 4 steps). It is clear that the stage-specific representation is necessary to generate greater pattern
similarity during encoding than during retrieval (e.g., VVC, Fig. 6A vs. Fig. 6B), and stage-specific representation strength together with cross-region reinstatement
could generate greater pattern similarity during retrieval than during encoding (e.g., AG, Fig. 6A vs. Fig. 6C). ERS: encoding-retrieval similarity; ENC: encoding; RET:
retrieval; WS: within-subject; BS: between-subject.
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the same brain regions contained both shared and subject-specific rep-
resentations, and that there was greater within-subject similarity than
cross-subject similarity during both encoding and retrieval, in both the
visual cortex and higher-order brain regions, such as the LAG. Second,
the representational strength was stage-specific across regions, with the
VVC and LAG showing stronger representational strength during
encoding and retrieval, respectively. Third, cross-subject ERSwas smaller
than cross-subject similarity during encoding and retrieval, suggesting
that the representation was transformed. Fourth, within-subject ERS was
numerically bigger but statistically comparable to cross-subject ERS,
suggesting some common transformation shared by subjects. Finally,
there existed cross-stage and cross-region reinstatement both within and
across subjects, with stronger within-subject reinstatement in the LAG.

A critical question then is how these memory transformations are
achieved. One possibility, as suggested by Chen et al. (2017), is that a
common transformation could be introduced from encoding to retrieval,
by adding a common memory pattern to all subjects at retrieval. Alter-
natively, enlightened by the findings of stage-specific representational
strength, as well as cross-region transformation in the current study, the
comparable cross- and within-subject ERS might be due to the overall
small ERS as a result of memory transformation, and the common
transformation might result from the cross-region transformation (e.g.,
from VVC to AG), given the shared representation in VVC during
encoding.

In this section, we used simulation to adjudicate these hypotheses. In
particular, we focused on three factors: (1) the stage-specific strength of
memory representation in different brain regions (k_strength_encoding/
retrieval), (2) the extent of shared cross-stage transformation (k_trans_-
shared), and (3) the extent of cross-region reinstatement (k_CR) (see
Methods).

Our simulation showed that these three factors affected the pattern
similarities in different ways. Specifically, the shared transformation
alone increased retrieval similarities (blue lines) (Fig. 6A, left panel),
consistent with Chen et al. (2017). A weaker stage-specific representation
strength decreased the pattern similarities during encoding and retrieval,
as well as the ERS (Fig. 6B and C). Finally, the cross-region reinstatement
alone increased the retrieval similarities enough to surpass encoding
similarities and ERS (Fig. 6A).

We then asked which mechanism(s) could better account for the
empirical data. Our simulation showed that although the shared trans-
formation mechanism increased cross-subject retrieval similarity (blue
lines) (Fig. 6), itself alone did not lead to greater cross-subject retrieval
similarity than cross-subject encoding similarity in AG (Fig. 6A, left
panel). Also, the strength of shared transformation did not affect the
cross-region pattern similarity (Fig. 7, left panel). In contrast, with stage-
Fig. 7. Simulation of cross-region pattern similarity for VVC to AG. Each plot show
subjects (k_trans_shared, varying from 0 to 1, with 4 steps). The five panels from left t
varying from 0 to 1, with 4 steps). With increasing strength of cross-region transform
within-region similarity (red lines). The strength of shared within-region transforma
region; BR: between-region; WS: within-subject; BS: between-subject.
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specific representation (especially the weak representation during
encoding for AG), we simulated the greater pattern similarity during
retrieval than encoding (Fig. 6C, right panel). Combined with increasing
strength of cross-region transformation, the cross-subject retrieval simi-
larity surpassed cross-subject ERS (Fig. 6), and the between-region ERS
(black lines) was comparable to the within-region ERS (red lines) (Fig. 7).

Taken together, the simulation results suggest that stage-specific
representational strength and cross-region reinstatement can fit the
observed data very well, whereas the shared transformation mechanisms
alone cannot.

4. Discussion

Combining a unique experimental design with cross-subject repre-
sentational similarity analysis, the current study for the first time sys-
tematically examined within-vs. cross-subject representations during
memory encoding and retrieval, as well as the transformation of repre-
sentations between the two processing stages. Our results found both
individual-specific and shared memory representations in distributed
brain regions, with the visual cortex showing greater item-specific rep-
resentation (both subject-specific and shared) during encoding and the
angular gyrus showing greater item-specific representation (both subject-
specific and shared) during retrieval. Importantly, we found that memory
representation was transformed systematically across regions and stages.
Our simulation captured well the response pattern by incorporating
stage-specific representational strength and cross-region pattern rein-
statement. Together, these results help to advance our understanding of
the nature of common and unique memory representations among
different individuals and their dynamic changes.

Given the personalized nature of individuals’ memories, it is thus of
great surprise and significance to find common neural representations
during memory retrieval (Charest et al., 2014; Chen et al., 2017). How-
ever, the degree of commonality and uniqueness of memory represen-
tations across individuals remains unclear. One previous study found that
individuals’ semantic representation patterns could predict their false
memory responses better than could the group-averaged responses
(Chadwick et al., 2016). Our study represents a major extension of
existing studies by providing a comprehensive picture of the unique and
shared representations during memory encoding and retrieval. In
particular, we found that almost all regions showed significant shared
representations across subjects, but there were also much greater
within-than cross-subject similarity, during both encoding and retrieval.
This provides clear neural evidence to support the behavioral observa-
tions that each brain has distinct representational patterns in perceiving,
remembering, and recalling an event, although there are also
s pattern similarity as a function of shared within-region transformation across
o right show the results with different levels of cross-region reinstatement (k_CR,
ation, cross-region similarity (black lines) increased to match and even surpass
tion had no significant effect on the cross-region pattern similarity. WR: within-
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cross-subject similarities.
Interestingly, we found that the degree of shared representations was

modulated by processing stages: Whereas the bilateral VVC showed
greater shared representations during encoding, the AG and mPFC
showed greater shared representations during retrieval. This is consistent
with a previous study of shared representations during movie watching
and recall (Chen et al., 2017). Using different analytical approaches, the
current study and a previous study (Xiao et al., 2017) found the same
pattern of results that emphasizes the role of VVC and AG in representing
high-fidelity item-level information during encoding and retrieval,
respectively. Consistently, another study only found category-level but
not item-level reinstatement in the VVC during retrieval (Kuhl and Chun,
2014), and it was not possible to reconstruct the perceived images from
the occipitotemporal representations during working memory (Lee and
Kuhl, 2016). Given these regions’ distinct roles in memory encoding and
retrieval, it might be reasonable to argue that the shared memory rep-
resentations during recall in the high-level cortical regions are mainly
due to their representational role in memory retrieval. Our simulation
analysis further emphasizes the importance of stage-specific memory
representations.

These results suggest that retrieval might not involve a faithful rein-
statement of encoded representations, but rather may engage additional
abstraction processes to enable the formation of conceptual knowledge
from perceptual experience (Binder and Desai, 2011). Indeed, the AG and
VVC have been posited to represent distinct information: the represen-
tation in the VVC contains perceptual details, whereas the representation
in the AG is identity-specific and invariant to viewpoints (Jeong and Xu,
2016), and is modulated by semantic similarity (Ye et al., 2016). Besides,
the cross-subject encoding-retrieval similarity was smaller than that
during encoding and retrieval, suggesting the representation in the same
regions might be altered from encoding to retrieval. Combining both
lines of evidence, we further hypothesized and verified that this
abstraction might be achieved by cross-region reinstatement, i.e., the
encoded representation in VVC was reinstated in the mPFC and AG. In
particular, we found the VVC-LAG ERS was comparable to LAG-LAG ERS,
suggesting some cross-region information transformation.

It should be noted that encoding and retrieval involve different task
structures and visual inputs, which might have contributed to the
different activation patterns in encoding and retrieval. For example, we
found a significant shift in brain regions that showed shared and subject-
specific representations during encoding (e.g., VVC) and retrieval (e.g.,
AG), which could be due to the task differences between the two memory
stages. Nevertheless, by focusing on the neural representations, our data
also revealed changes in representational format between encoding and
retrieval. Furthermore, the second-order pattern analysis, like the first-
order analysis of item-specific representation used in the previous
study (Xiao et al., 2017), could control the effect of common cognitive
processes shared by items on the representation patterns. As a result, the
differences between encoding and retrieval within regions mainly re-
flected the change of item-specific representations. One potential caveat
is that this approach could not account for the possible task by stimuli
interactions, which could affect the representational structure. Future
studies should further examine the nature of representations during
encoding and retrieval, such as the representational format, content, and
dimension, to further elucidate the transformative nature of memory
retrieval.

The current study revealed no significant differences between within-
and cross-subject ERS, although the former was numerically greater. This
is also quantitatively consistent with a previous observation that only a
few voxels showed greater within-than cross-subject ERS (Chen et al.,
2017). Inconsistent with the previous study (Chen et al., 2017) which
found significantly greater cross-subject retrieval similarity than
cross-subject ERS in the PMC, the current study only found a marginally
significant difference in the angular gyrus but not PMC. This could be due
to the obvious differences between the two studies in their experimental
design, materials and analytical approaches. First, the materials used in
10
the current study were rather homogeneous, as compared to various
events in a movie in Chen et al. (2017). This could reduce the overall
statistical power in the representational similarity analysis. Second, we
did not ask subjects to verbally describe the visual scenes during memory
retrieval, which probably reduced the encoding-to-retrieval trans-
formation. Third, the visual representation might be less likely to be
shared across individuals than the abstract verbal description, reducing
the cross-subject similarity during retrieval. Future studies should
examine the shared and unique memory representations using different
memory paradigms.

What could lead to the stronger cross-subject similarity during
retrieval than ERS, and also the comparable within- and cross-subject
ERS? As suggested by Chen and colleagues (Chen et al., 2017), this
observation could suggest a common memory transformation. Our
simulation results suggest that adding a strong new pattern shared by all
subjects during retrieval could simulate the greater retrieval similarity
than cross-subject ERS (Chen et al., 2017), but this common trans-
formation alone could not generate the stage-specific representation
strength, the comparable within-vs. cross-subject ERS, or the comparable
cross-vs. within-region ERS in the LAG. Still, it is unclear how this
common transform could be achieved. Unlike other studies (Hasson,
Ghazanfar, Galantucci, Garrod and Keysers, 2012; Zadbood et al., 2017),
the experimental paradigm used in the current study and Chen et al.
(2017) did not engage social interaction or social exchange.

In contrast, by incorporating stage-specific representational strength
and cross-region reinstatement, as revealed by our data, we were able to
simulate the greater cross-subject retrieval similarity than cross-subject
ERS. Since the encoded representation in VVC contained both shared
and subject-specific features, this cross-region transformation thus is
both subject-specific and shared, which could well account for the
subject-specific cross-region transformation. It should be noted that in
Chen et al.’s study, a subject-specific random pattern was added to the
common transformation pattern, which was termed noise in memory
transformation. Without this noise, it is impossible to obtain greater
within-than cross-subject similarity during retrieval. Together, our re-
sults suggest that the cross-region transformation mechanism could well
account for the empirical data, as well as provide a good mechanism for
the origin of subject-specific and shared patterns of cross-stage memory
transformation.

How the cross-region pattern reinstatement is achieved in the brain is
still unclear. One possibility is that different brain regions contain
different aspects of representations of the stimuli, which share the same
representational structures, allowing the consistent mapping from one
brain region to another brain region during information transformation.
It has been shown that neural information flow is reversed between ob-
ject perception and object reconstruction from memory (Linde-Domingo
et al., 2019). In particular, when seeing an object, low-level perceptual
features were discriminated faster and could be decoded from brain ac-
tivity earlier, than high-level conceptual features. During retrieval, the
encoded representation was actively reconstructed and represented in
the angular gyrus. This is achieved through the hippocampal pattern
reinstatement mechanisms (Estefan et al., 2019; Lohnas et al., 2018; Xiao
et al., 2017), by integrating the information from the visual cortex as well
as long-term knowledge. Future studies should examine the retrieval
processes with higher spatiotemporal measures of brain activation
patterns.

The capacity to share memories is essential for our ability to interact
with others and form social groups, and the current study provides a
practical methodological framework to study cross-subject representa-
tion. Social interaction has been primarily studied using neural syn-
chronization across subjects in the temporal domain (Nummenmaa et al.,
2018), but cross-subject pattern similarity analysis could provide a more
direct measure of the shared mental representation. So far, this type of
analysis has been mainly conducted on fMRI data in terms of spatial
patterns, but it could be readily extended to the spatiotemporal domain
(Feng et al., 2019; Lu et al., 2015). Several methodological caveats
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should be mentioned here. First, as emphasized in our analysis, the
autocorrelation of the BOLD signal would affect the activation pattern,
which could create artificial patterns of similarities when the trial orders
are matched between two representation similarity matrices (RSM), or
decrease the similarity results if the orders are not matched. The random
exchange could help to solve this issue, but increase the computational
demand and make the whole-brain searchlight analysis less feasible.
Second, the similarity between two RSMs might not suggest the same
representational features, but rather some higher-order similarity. Third,
the regions were defined based on the group-based anatomical template.
Recent studies have shown with dense sampling of resting-state data that
we can achieve precise parcellation of individual brains that are very well
aligned with the functional architecture (Braga and Buckner, 2017; Choe
et al., 2015; Gordon et al., 2017; Laumann et al., 2015; O’Connor et al.,
2017). It remains to be seen whether we can reveal stronger shared
representations using individualized brain parcellation.

Finally, the current study overtrained the subjects to achieve high
memory performance during retrieval. This is critical for us to examine
the representation during retrieval both within and across subjects. This
overtraining, however, might have changed the encoding processes,
stabilize the representation (Huang et al., 2013; Wiestler and Die-
drichsen, 2013), make the encoding and retrieval processes more similar
(i.e., the restudy of the same item might involve the retrieval of a prior
representation, termed study-phase retrieval). Although these factors
might reduce the differences between encoding and retrieval, the fact
that we still found low encoding-retrieval similarity provides strong ev-
idence that memory is transformed. We would expect even greater
transformation for one-shot learning, an interesting hypothesis that could
be examined in future studies.

Taken together, this study tested the nature of the individual-specific
and shared memory representations simultaneously, and also tested their
transformation patterns from encoding to retrieval. Our results under-
score the stage-specific representation and reconstructive nature of
memory. Future research should further investigate how social interac-
tion shapes the subject-specific and shared memory representation.
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