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Abstract

Resting-state functional connectivity profiles have been increasingly shown to be

important endophenotypes that are tightly linked to human cognitive functions and

psychiatric diseases, yet the genetic architecture of this multidimensional trait is

barely understood. Using a unique sample of 1,704 unrelated, young and healthy

Chinese Han individuals, we revealed a significant heritability of functional connectiv-

ity patterns in the whole brain and several subnetworks. We further proposed a par-

titioned heritability analysis for multidimensional functional connectivity patterns,

which revealed the common and unique enrichment patterns of the genetic contribu-

tions to brain connectivity patterns for several gene sets linked to brain functions,

including the genes expressed preferentially in the central nervous system and those

associated with intelligence, educational attainment, attention-deficit/hyperactivity

disorder, and schizophrenia. These results for the first time reveal the genetic archi-

tecture of multidimensional brain connectivity patterns across different networks

and advance our understanding of the complex relationship between gene sets, neu-

ral networks, and behaviors.
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1 | INTRODUCTION

A central goal of human genetics is to understand the genetic archi-

tecture of complex traits (Evans & Keller, 2018; Timpson, Greenwood,

Soranzo, Lawson, & Richards, 2018). It is generally recognized that the

brain may serve as an important endophenotype for connecting genes

and behaviors (Gottesman & Gould, 2003; Khadka et al., 2013;

Meyer-Lindenberg & Weinberger, 2006). For example, the global

efficiency of brain connectivity, which is a widely used graphic theo-

retical measurement (Achard & Bullmore, 2007), can track and predict

cognitive performance (Bassett et al., 2009) and patterns of diseases

(Fornito, Zalesky, & Breakspear, 2015). Meanwhile, the multi-

dimensional connectivity patterns could provide rich information that

serves as a unique brain fingerprint to reliably identify the same per-

son across various scan sessions (Finn et al., 2015). The multi-

dimensional connectivity patterns reflect brain maturation (Kaufmann
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et al., 2017) and can predict fundamental cognitive functions such as

intelligence (Dubois, Galdi, Paul, & Adolphs, 2018; Finn et al., 2015),

creativity (Beaty et al., 2018), and attention (Rosenberg et al., 2016). It

could also reliably differentiate healthy individuals from those suffer-

ing psychiatric conditions, such as attention-deficit/hyperactivity dis-

order (ADHD; Rosenberg et al., 2016) and schizophrenia (SCZ; Yahata

et al., 2016).

The genetic basis of this important endophenotype, however, is

largely unknown. In an early study, Glahn et al. (2010) used extended

pedigree samples to demonstrate the importance of genetic factors to

the default mode network's functional connectivity. Later, twin stud-

ies revealed significant additive genetic effects on resting-state net-

works (Colclough et al., 2017; Fornito et al., 2011; Ge, Holmes,

Buckner, Smoller, & Sabuncu, 2017; van den Heuvel et al., 2013).

Nevertheless, these twin studies could not uncover the specific

genetic factors contributing to the multidimensional traits of the

brain.

To overcome these limitations, genome-wide complex traits anal-

ysis (GCTA) tools have been developed to estimate the single nucleo-

tide polymorphisms (SNP)-based heritability of a certain trait in a

large-scale unrelated population (Yang, Lee, Goddard, &

Visscher, 2011), providing a lower bound of the narrow-sense herita-

bility estimated in pedigree studies. Furthermore, by partitioning the

genes into meaningful clusters or pathways, researchers can examine

the genetic architecture of these traits (Chen et al., 2015; P. H. Lee

et al., 2016; Yang, Manolio, et al., 2011). Other studies have used

polygenic scoring analysis (Torkamani, Wineinger, & Topol, 2018) or

the linkage disequilibrium (LD) score regression method (Finucane

et al., 2015) to estimate the aggregated contribution of multiple SNPs

to certain traits. Although most existing studies have applied these

methods to scalar traits, a novel method has been recently proposed

to estimate the heritability of multidimensional traits, such as brain

shape, using unrelated subjects (Ge et al., 2016). To date, no study has

investigated the genetic architecture of multidimensional traits by

combining genome-wide SNP heritability and genomic partitioning

strategies.

The current study aimed to investigate the polygenetic architec-

ture of multidimensional functional connectivity traits using a group

of young, healthy and unrelated Han Chinese individuals (n = 1,704,

average age = 20.5 years, ranging from 16 to 29 years, with 1,453 of

them in the range of 18–22 years). This limited age range is quite suit-

able for studying the effects of genetic factors on the brain functional

connectome, as existing studies have shown that the distinctiveness

of the brain functional connectome increases rapidly from 8 to

18 years (Kaufmann et al., 2017). In addition, the Han population is

genetically more homogenous than the more widely studied Western

populations, providing stronger statistical power for detecting genetic

effects. To further understand the genetic architecture of each func-

tional brain network, we focused on five gene sets that have been

found to affect brain functions and extended the approach used in Ge

et al. (2016) based on a genomic partitioning strategy (Yang, Manolio,

et al., 2011) to examine the patterns of genetic enrichment in each

brain network.

2 | MATERIALS AND METHODS

2.1 | Participants

The participants were recruited from the Cognitive Neurogenetic

Study of Chinese Young Adults (CNSCYA) Project, which recruited

over 2,500 Chinese Han young adults from Beijing and Chongqing,

with a focus on understanding the genetic, neural, and cognitive

mechanisms of human cognition. In our study, we restricted our

analyses to 1,822 subjects with both genomic and resting-state

imaging data. One hundred eighteen subjects were excluded for the

following reasons: 62 were removed due to large head motions

(a translation greater than 3 mm in any direction, or a rotation

greater than 3�), 29 were excluded due to a lack of whole-brain cov-

erage in the resting-state scan, 6 were excluded for poor genomic

quality (participants showing missing genotyped SNPs >5%), 10 were

excluded for missing gender or age information, and 11 were

excluded due to close genomic relationships (genetic relatedness

>0.05, see below). As a result, a total of 1,704 unrelated samples

(652 males, aged 16–29 years) with high-quality genomic data and

resting-state fMRI scans were included in our analysis. All subjects

were healthy, free of any psychiatric conditions, and with normal or

corrected-to-normal vision. Written informed consent was obtained

from each participant after a full explanation of the study proce-

dure. This study was approved by the Institutional Review Boards

(IRBs) of Beijing Normal University and Southwest University,

China.

2.2 | Genotype quality control and imputation

A 4 ml venous blood sample was collected from each subject. Geno-

mic DNA was extracted according to standard methods. Samples were

genotyped on Affymetrix 6.0, Illumina OmniExpress, Illumina

Zhonghua, or Illumina Omni2.5. Standard genome-wide association

quality control filters were applied to each data set individually using

the Plink 1.9 (Chang et al., 2015; https://www.cog-genomics.org/

plink2). We excluded SNPs with any of the following conditions: A

minor allele frequency (MAF) of <5%, a per-SNP missingness >5%, or

a failing of the Hardy–Weinberg equilibrium test (p < 1 × 10−6). After

that, six participants showing missing SNPs >5% were excluded from

subsequent analyses (Table S1). The cleaned genotype data were then

recoded to the forward strand using functions and strand alignment

data files produced and hosted by Will Rayner (https://www.well.ox.

ac.uk/~wrayner/strand/index.html). Finally, we used the HRC-1000G-

check-bim.pl script to perform some final filtering and split data by

chromosome (https://www.well.ox.ac.uk/~wrayner/tools/).

The preprocessed genotype data were then imputed against the

1,000 Genomes reference panel (phase 3 version 5, East Asian popu-

lation) by using the Michigan Imputation Server (Das et al., 2016;

https://imputationserver.sph.umich.edu/index.html). Previous studies

have shown that for the Han Chinese population, 1000G phase 3 ref-

erence panel performs better than the Haplotype Reference
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Consortium (HRC) in terms of both the number of well-imputed SNPs

and imputation quality (Lin et al., 2018) and the R2 between experi-

mental and imputed genotypes was >95% for common SNPs

(Genomes Project et al., 2015). We used Eagle (version 2.4) for phas-

ing (Loh et al., 2016) and Minimac4 for imputation. The imputed SNPs

from different data sets were then combined. SNPs meeting any of

the following criteria were excluded: Imputation information score

R2 < 0.3 (Y. Li, Willer, Ding, Scheet, & Abecasis, 2010), Hardy–

Weinberg p-value < 1 × 10−6, MAF < 1%, or per-SNP missingness

>5%. This yielded ~6.6 million common autosomal chromosome SNPs

after quality control.

To remove close relatives in the sample, we used GCTA functions

(Yang, Lee, et al., 2011; https://cnsgenomics.com/software/gcta) to

estimate the genetic relatedness for pairs of individuals in the com-

bined data set using all of the ~6.6 million common SNPs. One sample

from each pair of individuals with an estimated genetic relatedness

>0.05 was removed (11 subjects were removed).

Furthermore, we performed principal component (PC) analysis

(Price et al., 2006) in the combined data set using GCTA functions

(Yang, Lee, et al., 2011) to check the ancestry of the participants

used in the current study. Briefly, we used the overlapping SNPs

(~3.3 million) of our current genome data and the 1000 genome

project phase 3 data (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/

release/20130502/), and the results show that all our participants

are East Asians (Figure S1).

2.3 | Image acquisition

Neuroimaging data were acquired with a 3.0 T Siemens MRI Trio

scanner in the Brain Imaging Centers at Beijing Normal University and

Southwest University. Anatomical MRI scans were acquired using a

T1-weighted, three-dimensional, gradient-echo pulse sequence.

Parameters for this sequence were as follows: Repetition time/echo

time/θ = 2,530 ms/3.39 ms/7�, field of view = 256 × 256 mm,

matrix = 192 × 256, and slice thickness = 1.33 mm. A total of 128 and

144 sagittal slices were acquired to provide a high-resolution struc-

tural image of the whole brain for the Beijing data scanned during

phase one (2006–2008) and phase two (2013–2017), respectively.

For Chongqing sample, repetition time/echo time/θ = 2600 msec/

3.02msec/8�, field of view = 256 × 256 mm, matrix = 256 × 256, and

slice thickness = 1.00 mm. A total of 176 sagittal slices were acquired.

For the resting-state scan, participants laid supine on the scanner

bed and were instructed to close their eyes and to not think about

anything in particular. Foam pads were used to minimize head motion.

Functional scanning used a gradient echo EPI sequence with PACE

(prospective acquisition correction).

The following parameters were used: TR = 2,000 ms; TE = 30 ms;

flip angle = 90�; FOV = 200 × 200 mm2; 64 × 64 matrix size with a

resolution of 3.1 × 3.1 mm2. Thirty-three 3.0 mm and 3.5 mm trans-

verse slices were used for the Beijing data scanned during phase one

(2006–2008) and phase two (2013–2017), respectively. The Chong-

qing sample used thirty-two 3.0 mm transverse slices to cover the

whole cerebrum and most of the cerebellum, TR= 2000 ms; TE = 30

ms; flip angle = 90�; FOV = 220 × 220 mm2; 64 ×64 matrix size with a

resolution of 3.4 × 3.4 mm2. Two hundred forty brain volumes (time

points) were acquired from the Beijing phase one sample, 200 volumes

from the Beijing phase two sample, and 242 volumes from the Chong-

qing sample.

2.4 | Image processing

Image preprocessing was performed using GRETNA tools (J. Wang,

Wang, et al., 2015) and the AFNI toolbox (Cox, 1996). The first three

volumes of each session were discarded by the scanner automatically

to allow for signal equilibrium. In addition, the first 10 EPI volumes of

the resting-state scan were deleted to allow for signal equilibrium and

to allow the participants to adapt to the scanning noise. The remaining

images were slice-time corrected, realigned, and registered to the

standardized MNI space. Each fMRI volume was then segmented into

separate tissue types (gray matter, white matter, and cerebrospinal

fluid) using DARTEL (Ashburner, 2007). We then performed temporal

detrending, nuisance regression, and bandpass filtering using AFNI

tools. Based on the methods from a recent study (Lindquist, Geuter,

Wager, & Caffo, 2019), we combined nuisance covariates, linear

trends, and temporal filters (0.01–0.1 Hz) into a single regression

model to avoid reinjection of the noise signals. The nuisance

covariates included the average signal from the cerebrospinal fluid

and white matter, the global signal, and 24 motion parameters

(Friston, Williams, Howard, Frackowiak, & Robert, 1996). Finally, the

data were spatially smoothed using a 4-mm full-width-at-half-

maximum (FWHM) Gaussian kernel.

2.5 | Network construction

Functional connectivity was assessed using a widely used parcellation

scheme consisting of 264 nodes across the whole brain (Power

et al., 2011). We extracted the time series from each node by taking

the mean signal in all voxels. Functional connectivity was calculated as

the pairwise correlation between the time series from all nodes which

resulted in a 264 × 264 connectivity matrix for each participant. We

calculated the multidimensional functional connectivity patterns in

the whole brain (all), as well as in the following 10 major subnetworks

(Cole et al., 2013): Motor and somatosensory (somatomotor), cingulo-

opercular, auditory, default mode, visual, frontal–parietal, salience,

subcortical, ventral attention, and dorsal attention networks.

2.6 | Multidimensional functional connectivity

Pearson correlations between pairs of node time series were calcu-

lated and transformed using Fisher's Z-transformation. The connectiv-

ity strength was then spatially standardized into Z scores to make the

functional connectivity comparable across subjects (Ge et al., 2017).
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All the resulting values within each network were defined as the mul-

tidimensional functional connectivity.

2.7 | Genome-wide SNP-based heritability analysis

SNP-based heritability is defined as the proportion of phenotypic

variance in a population that can be explained by the additive effects

of a set of SNPs. We used methods recently developed by Ge

et al. (2016) to estimate the genome-wide heritability of the multi-

dimensional functional connectivity patterns. Briefly, a given multi-

dimensional trait Y, where Y is a matrix comprising M pair-node time

series correlations from N individuals, could be modeled as the fol-

lowing form: Y = G + C + E, where G, C and E are also N × M matri-

ces, G represents the sum of additive genetic effects, C represents

the shared environmental factors, and E represents measurement

errors and other known sources of variance. Since our sample con-

sisted of unrelated subjects, the shared environmental factors could

be ignored, and the model can be redefined as Y = G + E. Where

vec(G) ~ N (0,
P

A�K), vec(E) ~ N (0,
P

E�I), vec(.) is the matrix

vectorization operator, � the Kronecker product of matrices.
P

A

the genetic covariance matrix,
P

E the residuals covariance matrix, I

an identity matrix, and K the genetic relationship matrix (GRM) for

each pair of individuals estimated from genetic data, which was cal-

culated by using GCTA functions (Yang, Lee, et al., 2011). Briefly,

the genetic relationship between individuals a and b is defined as

the mean correlation of SNP values between a and b over a number

of SNPs:

Kab =
1
M

XM
i=1

xia−2pið Þ xib−2pið Þ
2pi 1−pið Þ

where xia denotes the number of copies of the reference allele (usually

the minor allele) for the ith SNP of the ath individual, and pi is the fre-

quency of the reference allele.

The heritability of a set of multidimensional traits can be

defined as:

h2SNP =
tr ΣA½ �
tr ΣP½ � =

tr ΣA½ �
tr ΣA½ �+ tr ΣE½ � ,

where
P

P is the phenotypic covariance matrix, and tr[.] is the trace

operator for a matrix. Finally, the model is fitted using a moment-

matching estimator.

To adjust for the remaining subpopulation stratification, we per-

formed the PC analysis using all of the ~6.6 million imputed data, and

then included the top 10 principal components of ancestry, as well as

age, gender, fMRI scanner, genotype array, and a head motion mea-

sure (mean framewise displacement) as covariates in the model.

Following Ge et al. (2016), the current study used both the para-

metric Wald test and the nonparametric permutation test to examine

the statistical significance of genome-wide SNP heritability. For the

permutation test, we simultaneously shuffled the columns and rows

of the GRM 10,000 times and recorded the heritability values esti-

mated from the permuted data. Note that this approach is equivalent

to randomly permuting the subjects in our study. Then, the estimated

heritability from the original data was compared to the distribution of

the permuted heritability values. Correction for multiple comparisons

was performed with the false discovery rate (FDR; Benjamini &

Hochberg, 1995).

2.8 | Estimating enrichment of candidate gene sets

To better characterize the genetic architecture of functional connec-

tivity, we further examined the enrichment (higher contribution) of

heritability of certain gene sets in each brain network. We included

five functional gene sets from previous studies: Genes preferentially

expressed in the central nervous system (CNS; S. H. Lee et al., 2012;

Raychaudhuri et al., 2010), SNPs associated with human intelligence

(Savage et al., 2018), SNPs associated with educational attainment

(J. J. Lee et al., 2018), SCZ-associated SNPs (Z. Li et al., 2017), and

ADHD-associated SNPs (Demontis et al., 2018). We also included

SNPs associated with Crohn's disease as a negative control set (Liu

et al., 2015), which should show no association with brain connectiv-

ity patterns.

For the CNS genes, we defined the genic boundaries as 50 kb

upstream and downstream from the 30 and 50 untranslated regions

(UTRs) of each gene according to the UCSC hg19 assembly, which

resulted in a set of ~1.3 million SNPs (~20% of the whole genome

SNPs). We obtained the genome-wide association studies (GWAS)

summary results for the two psychiatric diseases from the Psychiatric

Genomics Consortium (https://www.med.unc.edu/pgc/results-and-

downloads/), the GWAS results for intelligence from the Complex

Trait Genetics Lab (https://ctg.cncr.nl/), the GWAS results for educa-

tional attainment from the Social Science Genetic Association Consor-

tium (https://www.thessgac.org/data), and the GWAS results for

Crohn's disease from International Inflammatory Bowel Disease

Genetics Consortium (https://www.ibdgenetics.org/downloads.html).

All of the imputed SNPs in our current study were ranked based on

p values from the GWAS results mentioned above, and we defined

SNPs that passed a given threshold (here we selected the top 10%) as

associated SNPs of the corresponding traits.

We divided our imputation data into two sets: One contained

the trait-associated SNPs and the other contained what were

defined as control SNPs. Two genetic relationship matrices (GRMs)

were then calculated using GCTA functions (Yang, Lee, et al., 2011).

Previously, Yang et al. demonstrated that a joint analysis of multiple

GRMs as random effects prevented inflated estimates of local SNP

heritability (Yang, Manolio, et al., 2011). Thus, we used a joint analy-

sis of the two genetic components to estimate the genome-wide

SNP heritability as the sum of h2set (the heritability attributed to the

trait-associated SNPs) and h2control (the heritability attributed to the set

of unselected SNPs).

To examine gene enrichment of a set of genes for multi-

dimensional traits, we partitioned the genetic covariance matrix
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ΣA into two matrices: ΣAset, the genetic covariance due to the candi-

date gene set, and ΣAcontrol, the genetic covariance due to the unse-

lected SNPs. Thus, the candidate-set SNP heritability can be

formulated as:

h2set =
tr ΣAset½ �

tr ΣAset½ �+ tr ΣAcontrol½ �+ tr ΣE½ � ,

As in the genome-wide SNP heritability analysis, age, gender,

fMRI scanner, mean framewise displacement, genotype array, and top

10 principal components were included as covariates. Similar to Ge

et al. (2016), we used a data transformation strategy to account for

these covariates and a moment-matching method to estimate the

genetic covariances. Specifically, we estimated the standard error

(SE) of the candidate SNP sets (SE[set]) using the jackknife resampling

technique (Efron & Stein, 1981).

Enrichment was computed for each gene set as the ratio of the

estimated h2set to the expected h2set expectð Þ , which was the genome-wide

heritability h2g multiplied by the percentage of the SNPs in the given

set among all SNPs.

The degree of enrichment was quantified by a Z-score calculated

as follows:

Zset =

set
h

h2set expectð Þ

� �
−1

SE setð Þ=%SNP
:

The p-value for the Z-score was calculated by assuming that its

null distribution follows the standard normal distribution. Detailed

method descriptions can be found in Gusev et al. (2014).

Correction for multiple comparisons was again performed with

the FDR.

The method (using Z-score to test for significance) is often used

to test the significance of gene set enrichment, such as the widely

used LD-score regression (Finucane et al., 2015), and other studies

(Tansey & Hill, 2018).

We did not use the nonparametric permutation test because it is

computationally very intensive.

It is worth noting that previous studies often set heritability esti-

mates between zero and one to exclude negative values; such a prac-

tice might lead to biased estimates, especially for moderate sample

sizes (Wang, Yandell, & Rutledge, 1992). In order to obtain unbiased

estimates of h2, we allowed for negative values (i.e., did not set herita-

bility estimates between zero and one), even though they were

very rare.

2.9 | Validation analysis

We performed several validation analyses to verify the robustness of

our results. Specifically, we considered different parcellation schemes,

different preprocessing parameters (i.e., global signal regression), and

different numbers of selected candidate-set SNPs.

2.9.1 | Effects of parcellation scheme

To examine whether our main results could be replicated across dif-

ferent brain parcellation schemes, we performed genome-wide SNP

heritability analysis using a different brain functional parcellation

scheme (i.e., Shen 268 nodes; Shen, Tokoglu, Papademetris, &

Constable, 2013), which included the following 9 subnetworks: Medial

frontal, frontoparietal, default mode, subcortical-cerebellum, motor,

visual 1, visual 2, and visual association, as well as executive control

networks (the combination of medial frontal and frontoparietal net-

works). Only 1,533 subjects were eligible for this parcellation because

the other subjects lacked whole-brain coverage.

2.9.2 | Effects of global signal regression

Global signal regression is still a controversial issue in resting-state

fMRI. Several studies have shown that a 24-parameter head motion

regression is not sufficient to remove motion confounds from func-

tional connectivity estimates (Ciric et al., 2017; Parkes, Fulcher,

Yucel, & Fornito, 2018), but global signal regression can improve the

performance of this model. For this reason, we performed global sig-

nal regression in the main analysis. Nevertheless, other studies have

suggested that global signal regression may alter network properties

by introducing anti-correlations (Murphy, Birn, Handwerker, Jones, &

Bandettini, 2009; Weissenbacher et al., 2009). Recently, Murphy and

Fox (2017) suggested that different preprocessing strategies are likely

to provide complementary insights into functional brain organization,

so we examined genome-wide heritability without global signal

regression in our validation analyses.

2.9.3 | Effects of the number of SNPs in
enrichment analysis

For the candidate-sets analyses (i.e., SNPs associated with intelli-

gence, educational attainment, SCZ, ADHD, and Crohn's disease), dif-

ferent numbers of SNPs were included depending on the threshold

used. In the validation analyses, we also lowered the significance

threshold to the top 20% and top 30% SNPs, yielding more SNPs in

each candidate gene set.

3 | RESULTS

3.1 | Genome-wide SNP heritability of
multidimensional functional connectivity patterns

Our genome-wide SNP-based heritability analysis revealed that the

whole-brain (all) connectivity had significant heritability (h2SNP = 0.049,

SE = 0.011, pWald = 1.69×10−5, ppermutation = 5.50×10−4, corrected).

Four of the 10 subnetworks also showed significant heritability after

FDR correction (Figure 1), including the visual network (h2SNP = 0.087,
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SE = 0.028, pWald = 3.12×10−3, ppermutation = 1.47×10−3, corrected),

the default mode network (h2SNP = 0.065, SE = 0.015, pWald =

4.23×10−5, ppermutation = 5.50×10−4, corrected), the somatomotor

network (h2SNP = 0.055, SE = 0.021, pWald = 1.27×10−2, ppermutation =

7.98×10−3, corrected), and the frontal–parietal network (h2SNP =

0.052, SE = 0.021, pWald = 1.72×10−2, ppermutation = 1.23×10−2,

corrected).

3.2 | Enrichment of candidate gene sets in the
heritability of multidimensional functional connectivity
patterns

The above results suggested that some of the functional networks in

the current study were significantly heritable, making them appropri-

ate targets for more specific genetic analyses. To further examine

whether certain gene sets showed a relatively higher contribution

(i.e., enrichment) to the heritability of multidimensional functional con-

nectivity patterns, we selected five gene sets that have been linked to

cognitive function, educational attachment, psychiatric diseases, and

brain gene expression (Section 2), as well as SNPs associated with

Crohn's disease, which served as a nonpsychiatric control gene set.

Existing methods have focused on the contribution of all

available genetic variants to univariate or multidimensional traits

(Ge et al., 2016; Yang et al., 2010). Here, we proposed a partitioned

heritability analysis for multidimensional traits (Section 2). Using this

novel approach, we discovered several interesting findings

(Figure 2). In particular, we found genes that preferentially expressed

in the central nervous system were enriched in almost all the net-

works that showed significant genome-wide heritability, including

the frontal–parietal network (2.71× enrichment, p = 1.97 × 10−91,

corrected), visual network (2.17× enrichment, p = 1.46 × 10−25,

corrected), default mode network (1.62× enrichment,

p = 6.60 × 10−28, corrected), and the whole-brain (all) network

(1.57× enrichment, p = 2.02 × 10−48, corrected).

Interestingly, we found that the candidate SNP sets associated

with intelligence were enriched in all networks that showed significant

genome-wide SNP heritability. In particular, the intelligence-

associated genes were enriched in the visual network (4.68× enrich-

ment, p = 5.43 × 10−93, corrected), whole-brain (all) network (2.07×

enrichment, p = 4.51 × 10−60, corrected), default mode network

(2.29× enrichment, p = 2.44 × 10−43, corrected), the frontal–parietal

network (1.50× enrichment, p = 2.68 × 10−4, corrected), and the

somatomotor network (1.48× enrichment, p = 3.56 × 10−4, corrected).

We also found that the SNP set associated with educational attain-

ment showed enrichment in the visual network (3.55× enrichment,

p = 5.54 × 10−54, corrected) and the frontal–parietal network (1.79×

enrichment, p = 7.43 × 10−10, corrected).

F IGURE 1 Genome-wide SNP
heritability of multidimensional functional
connectivity patterns across networks.
Error bars represent the standard errors
(SE) of the heritability estimates.
Networks showing significant heritability
after FDR correction are highlighted with
asterisks (***p < .001, **p < .01, *p < .05)
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For the two gene sets related to psychiatric diseases, SCZ-

associated SNPs showed enrichment in the whole brain (1.89× enrich-

ment, p = 6.54 × 10−49, corrected), the frontal–parietal network

(1.40× enrichment, p = 2.78 × 10−3, corrected), and the visual net-

work (1.29× enrichment, p = 8.61 × 10−3, corrected). ADHD-

associated SNPs were also enriched in the frontal–parietal network

(2.43× enrichment, p = 2.15 × 10−24, corrected) and the somatomotor

network (2.42× enrichment, p = 1.77 × 10−26, corrected).

As expected, gene sets associated with Crohn's disease showed

no enrichment in any of the above networks.

3.3 | Validation results

Using the 268 parcellation scheme, we found that 5 of the 9 subnet-

works and the whole-brain (all) network were significantly heritable,

whereas the default mode network showed marginally significant her-

itability (h2SNP = 0.062, SE = 0.037, p = .065, corrected; Figure 3). These

results suggested that these brain networks, including the motor,

visual, frontal–parietal, default mode, and whole-brain networks

showed reliable heritability and that the results were not affected by

parcellation scheme. Without global signal regression, we also

F IGURE 2 Enrichment of SNP-heritability for multidimensional functional connectivity across candidate gene sets and networks. Each solid bar
displays estimated enrichment folds, while the null hypothesis of 1.0 enrichment is shown by a dashed dark line. The p values indicate the
significance of the difference from the expectation. Error bars represent the enrichment SE (= SE(set)/ % SNP). Networks with significantly enriched
candidate set-based heritability after FDR correction are marked with asterisks (***p < .001, **p < 0.01, *p < .05). We selected the top 10% SNPs of
the ranked imputed genome data as trait-associated variants. CNS, genes expressed in the central nervous system; IQ, SNPs associated with human
intelligence; EA, SNPs associated with educational attainment; SCZ, SNPs associated with schizophrenia; ADHD, SNPs associated with attention-
deficit/hyperactivity disorder; Crohn, SNPs associated with Crohn's disease

F IGURE 3 Genome-wide SNP
heritability of multidimensional functional
connectivity patterns across networks
using the 268 nodes parcellation scheme.
Global signal regression was applied.
Error bars represent the SE of the
heritability estimates. Networks showing
significant heritability after FDR
correction are highlighted with asterisks
(***p < .001, **p < .01, *p < .05)
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obtained very similar genome-wide heritability results (Figure 4),

except that the frontal–parietal network (h2SNP = 0.039, SE = 0.022,

p = .107, corrected) and the somatomotor network (h2SNP = 0.033,

SE = 0.023, p = .144, corrected) showed marginally significant herita-

bility in this validation analysis. Finally, our results showed that differ-

ent thresholds (and hence the different numbers of SNPs) generated

similar enrichment patterns (Figure 5). For example, regardless of the

threshold, the intelligence-associated SNPs still showed enrichment in

the default mode network, visual network, and the whole brain (all)

network. Similarly, ADHD- and SCZ-associated SNPs consistently

showed enrichment in the frontal–parietal network for different

threshold levels. SCZ-associated SNPs were also robustly enriched in

the whole brain network. Notably, with increasingly stricter threshold,

we obtained higher folds of enrichment, suggesting the SNPs’ contri-

butions to the phenotypes and their heritability were reliable.

Together, the above validation results suggested that our main

results were robust and replicable.

4 | DISCUSSION

To the best of our knowledge, this is the first study that examined

SNP-based heritability analysis and the genetic architecture of multi-

dimensional resting-state functional connectivity patterns across dif-

ferent networks in a large unrelated population using partitioned

heritability methods (gene enrichment). Compared to univariate analy-

sis, it has been suggested that joint multivariate analysis of multivari-

ate traits could better capture the nature of data and increase

statistical power (Ge et al., 2016; Schmitz, Cherny, & Fulker, 1998),

which is a very helpful approach when the sample size is limited. In

addition, partitioned heritability analysis revealed a significant shared

genetic basis between certain functional networks and psychiatric

diseases.

Using a very large sample size of an unrelated population from

Biobank, Elliott et al. (2018) performed a comprehensive genetic asso-

ciation analysis of a number of brain imaging phenotypes. By

F IGURE 4 Effects of global signal
regression on the SNP heritability of
multidimensional functional connectivity
patterns. Error bars represent the SE of
the heritability estimates. withGSR,
Global signal regression was applied in
the preprocessing analysis. withoutGSR,
Global signal regression was not applied.
Networks showing significant heritability

after FDR correction are highlighted with
asterisks (***p < .001, **p < .01, *p < .05)

F IGURE 5 Effects of the number of selected associated SNPs on the enrichment pattern of multidimensional functional connectivity. The
enrichment pattern overall was very similar across different numbers of SNPs included among the candidate sets. Each solid bar displays
estimated enrichment folds, while the baseline (1.0 enrichment) is shown by a dashed dark line. Error bars represent the enrichment SE
(enrichment SE = SE(set)/ % SNP). Reported are the results using three different cut-off thresholds: Top 10%, top 20%, and top 30%. Networks
with significantly enriched candidate-set-based heritability after FDR correction are highlighted with asterisks (***p < .001, **p < .01, *p < .05).
See Figure 2 for definition of acronyms
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examining each functional connectivity edge individually, they found

that only 235 of 1,771 edges were significantly heritable; this propor-

tion is much smaller than the proportion of networks showing signifi-

cant heritability (5 of 11) in the current study. One factor contributing

to the difference is that our joint analysis of multidimensional traits

could increase statistical power (Schmitz et al., 1998). In addition, our

sample was more homogenous in terms of age (young adults

vs. middle-aged to elderly adults) and genetic ancestry (Chinese Han

vs. British), which could also improve statistical power of heritability

analysis. Moreover, following Finucane et al. (2015), Elliott et al. (2018)

partitioned the heritability into 24 functional categories such as cod-

ing, UTR, promoter, intron, enhancer, and so on, and revealed no

enrichment for functional connectivity edges in any of these func-

tional categories. In contrast, in the current study, we chose the candi-

date gene sets that have been associated with psychiatric diseases or

cognitive functions, and obtained some meaningful gene set enrich-

ment results. The different candidate gene sets used in the two stud-

ies are likely to contribute to the different enrichment results.

Our SNP-based heritability estimate of multiple traits, which was

a weighted average of the individual trait's heritability

(Ge et al., 2016), was overall lower than that using twins from the

Human Connectome Project (Colclough et al., 2017; where the aver-

age heritability of all connections was 15%). There are two potential

reasons for this discrepancy. First, the genome-wide SNP heritability

in our study only captured additive genetic effects due to autosomal

common SNPs, and hence ignored the effects of rare variants and sex

chromosome variants and provided a lower-bound estimate of the

narrow-sense heritability. Second, traditional twin and family designs

may inflate the heritability estimation because they violate the shared

common environment (Nolte et al., 2017).

Our partitioned heritability analysis revealed several important

patterns of gene set enrichments that could help advance our under-

standing of brain-behavioral relationships. First, we found that genes

preferentially expressed in the CNS showed enrichment in almost all

the networks showing significant SNP heritability. Previous studies

have suggested that such CNS genes are associated with susceptibil-

ity to psychiatric diseases (Cross-Disorder Group of the Psychiatric

Genomics et al., 2013; S. H. Lee et al., 2012). Our results suggested

that the CNS genes might contribute to psychiatric diseases by modu-

lating the function of these networks, thus furthering our understand-

ing of the biological mechanism of these genes.

Our study indicated that the set of SNPs associated with intelli-

gence were enriched in all of the five networks showing significant

genome-wide heritability, including the default mode, frontal–parietal,

visual, somatomotor, and whole-brain networks. These networks are

known to be involved in human intelligence (Deary, Penke, &

Johnson, 2010; Ming et al., 2009; Sripada et al., 2019; Woolgar

et al., 2010). In particular, the default mode network plays an impor-

tant role in working memory, language, and intelligence (Greicius,

Krasnow, Reiss, & Menon, 2003; Schultz & Cole, 2016; Smith, Mitch-

ell, & Duncan, 2018). Furthermore, the posterior cingulate cortex, a

key node in the default mode network, has been found to be a strong

focus of cross-network interactions (de Pasquale et al., 2012); thus, it

may serve as a central and flexible network hub and play an important

role in human cognition and related neuropsychological diseases

(Leech & Sharp, 2014). Interestingly, although the set of SNPs associ-

ated with educational attainment also showed enrichment in the

frontal–parietal network and the visual network, the overall enrich-

ment was weaker compared with the set of SNPs associated with

intelligence. This is consistent with the finding that educational attain-

ment is a complex trait that is influenced by intelligence as well as var-

ious other factors such as personality, family income, school quality,

and so on (Krapohl et al., 2014; Krapohl & Plomin, 2016).

We have observed both common and distinct patterns of enrich-

ment for gene sets associated with the two different psychiatric disor-

ders (ADHD and SCZ). In particular, both sets of SNPs showed

enrichment in the frontal–parietal network. SCZ-associated SNPs also

showed enrichment in the visual network and the whole-brain net-

work, whereas only ADHD-associated SNPs showed enrichment in

the somatomotor network. These findings are consistent with the

notion that common and distinct neural mechanisms exist among dif-

ferent psychiatric diseases (Khadka et al., 2013).

One interesting network associated with ADHD-associated SNPs

was the somatomotor network. Recent review and meta-analysis arti-

cles note that a wide range of brain networks, including the frontal–

parietal and somatomotor networks, are related to ADHD

(Castellanos & Proal, 2012; Cortese et al., 2012). Furthermore, using

transcranial magnetic stimulation, researchers have found abnormal

inhibition in the motor network in ADHD patients (Gilbert, Isaacs,

Augusta, MacNeil, & Mostofsky, 2011). The somatomotor network

may act as a compensatory mechanism in patients with ADHD, who

usually exhibit impaired function in the frontal–parietal network

(Fassbender & Schweitzer, 2006). The enrichment patterns revealed

in this study are consistent with these observations and provide inde-

pendent evidence at the genetic level emphasizing the roles of the

somatomotor network in ADHD.

Our results indicated that SCZ-associated SNPs were enriched

in the frontal–parietal network. Both structural and functional con-

nectivity studies demonstrated that SCZ is associated with severe

deficits in the frontal–parietal regions (Pettersson-Yeo, Allen,

Benetti, McGuire, & Mechelli, 2011; van den Heuvel, Mandl, Stam,

Kahn, & Hulshoff Pol, 2010). Furthermore, a meta-analysis of func-

tional neuroimaging studies have reported that during executive

function tasks, SCZ patients showed reduced activity in the dorsolat-

eral prefrontal cortex (DLPFC; Minzenberg, Laird, Thelen, Carter, &

Glahn, 2009).

One interesting network associated with the set of SCZ-

associated SNPs was the visual regions. SCZ patients show substantial

deficits in visual processing (Butler, Silverstein, & Dakin, 2008; Green,

Lee, Wynn, & Mathis, 2011). Furthermore, previous studies have

reported dysfunctions of the visual cortex in SCZ patients (Cavus

et al., 2012; Seymour et al., 2013; van de Ven, Rotarska Jagiela,

Oertel-Knochel, & Linden, 2017). Our results indicated that there is a

shared genetic basis between SCZ and the visual functional network.

Future studies should investigate more systematically the pathophysi-

ology underlying this relationship.
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Like many other studies, the current study used the additive

effect model in heritability estimates. Two potential limitations should

be noted. First, the additive model examined the narrow-sense herita-

bility (h2), which is the proportion of phenotype variance in a popula-

tion that is attributable to additive genetic variation. It does not

consider dominance and epistatic genetic effects; however, these

nonadditive genetic effects are believed to be much smaller than the

additive genetic effects. A recent meta-analysis based on 50 years of

twin studies, including nearly all published twin studies of complex

traits, indicated that 69% of twin studies supported a purely additive

genetic model (Polderman et al., 2015). Furthermore, Zhu et al. have

applied the extended GCTA approach to estimate dominance genetic

variance of 79 quantitative traits using a large sample size of unrelated

individuals (~7,000). On average, the dominance genetic variation

explained ~3% of the phenotypic variation, which was only a fifth of

the additive genetic variation (~15%) (Zhu et al., 2015). Second, the

narrow-sense heritability (h2), by definition, is non-negative. Never-

theless, negative values could be observed due to the effect of ran-

dom errors on very small true heritability. Some studies truncated

negative values to zero or did not include them; such a practice might

lead to biased estimates of heritability, especially for moderate sample

sizes (Wang et al., 1992). To get an unbiased estimate of h2, the cur-

rent study allowed for negative values (i.e., did not set heritability esti-

mates between zero and one), even though they were very rare (for a

recent in-depth discussion of negative heritability estimates, see

Steinsaltz, Dahl, and Wachter (2018)).

Several lines of future research can further advance our under-

standing of the genetic architecture of functional connectivity. First,

future studies could apply our approach to other big datasets, like the

UK biobank, and compare the results with those based on the Chinese

samples. Future studies can also combine samples from many differ-

ent cohorts and conduct comprehensive analyses, such as genome-

wide association analysis, heritability enrichment partitioning analysis,

and LD-MAF stratified heritability analysis (Yang et al., 2015), to

examine the contribution of rare genetic variations, which could fur-

ther unveil the genetic architecture of the multidimensional functional

networks. Second, future studies can use longer scan times for the

resting-state scan, which might better characterize individual brain

connectivity profiles (D. Wang, Buckner, et al., 2015). Third, the cur-

rent study used a Chinese sample, whereas the gene sets used in the

current study were mainly based on a meta-analysis of Western par-

ticipants. Although some studies have reported no heterogeneity

between Chinese and European ancestry cohorts (Demontis

et al., 2018; Z. Li et al., 2017; Liu et al., 2015), future studies should

further replicate our results using SNPs selected based on Chinese

populations. Finally, our approaches could be applied to other pheno-

types, such as psychiatric disorders and related cognitive functions.

In summary, with a large sample of Han Chinese young adults, the

current study revealed for the first time that additive genomic effects

explained a considerable proportion of variation in complex brain con-

nectivity profiles. Furthermore, by analyzing the enrichment patterns

of gene sets in multidimensional connectivity patterns, the current

study provided novel insights regarding the genetic architecture of

connectivity profiles in several brain networks, which should help us

to better understand the genetic and cognitive mechanisms underly-

ing various psychiatric conditions and eventually guide the develop-

ment of effective diagnoses and treatments.
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