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Abstract 

It has been consistently shown that words representing living things are better 

remembered than words representing nonliving things, yet the underlying cognitive and 

neural mechanisms have not been clearly elucidated. The present study used both 

univariate and multivariate pattern analyses to examine the hypotheses that living words 

are better remembered because (1) they draw more attention and/or (2) they share 

more overlapping semantic features. Subjects were asked to study a list of living and 

nonliving words during a semantic judgment task. An unexpected recognition test was 

administered 30 minutes later. We found that subjects recognized significantly more 

living words than nonliving words. Results supported the overlapping semantic feature 

hypothesis by showing that (a) semantic ratings showed greater semantic similarity for 

living words than for nonliving words, (b) there was also significantly greater neural 

global pattern similarity (nGPS) for living words than for nonliving words in the posterior 

portion of left parahippocampus (LpPHG), (c) the nGPS in the LpPHG reflected the 

rated semantic similarity, and also mediated the memory differences between two 

semantic categories, and (d) greater univariate activation was found for living words 

than for nonliving words in the left hippocampus (LHIP), which mediated the better 

memory performance for living words and might reflect greater semantic context 

binding. In contrast, although living words were processed faster and elicited a stronger 

activity in the dorsal attention network, these differences did not mediate the animacy 

effect in memory. Taken together, our results provide strong support to the overlapping 

semantic features hypothesis, and emphasize the important role of semantic 

organization in episodic memory encoding. 

 

Keywords 

Animacy effect; Neural global pattern similarity; MTL; Global match; Representational 

similarity analysis; Episodic memory 
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Introduction  

Recent studies have shown that living things are better remembered than nonliving 

things (Bonin, Gelin, & Bugaiska, 2014; Nairne, VanArsdall, Pandeirada, Cogdill, & 

LeBreton, 2013; VanArsdall, Nairne, Pandeirada, & Cogdill, 2014; VanArsdall, Nairne, 

Pandeirada, & Blunt, 2013). This animacy effect of memory has been consistently 

demonstrated in both recognition (VanArsdall et al., 2013) and free recall (VanArsdall et 

al., 2013, 2014), and when using either words (Nairne et al., 2013) or pictures (Bonin et 

al., 2014) as the learning materials. Besides their mnemonic advantages, livings things 

are also easier to recognize (Lag, 2005; Turnbull & Laws, 2000), name (Laws, Leeson, 

& Gale, 2002; Laws & Neve, 1999), and categorize (Turnbull & Laws, 2000) than are 

nonliving things. Nevertheless, the cognitive and neural mechanisms underlying the 

animacy effect of memory are poorly understood.  

 

There exist two main possible explanations of the animacy effect. One possibility is that 

living stimuli are better remembered because they draw more attention than nonliving 

stimuli (Lipp, Derakshan, Waters, & Logies, 2004; New, Cosmides, & Tooby, 2007) and 

attention is important for the formation of lasting memory (Chun & Turk-Browne, 2007; 

Kim, 2011; Turk-Browne, Golomb, & Chun, 2013; Uncapher & Wagner, 2009). This 

attentional bias for living stimuli can be further traced to their evolutionary advantage for 

human survival and fitness (Bonin et al., 2014; Laiacona, Barbarotto, & Capitani, 2006; 

Laws, 2000; VanArsdall et al., 2014), which has also been invoked to explain a 

documented gender-by-category interaction (males are better in naming and 

recognizing nonliving things whereas females are better at processing living things) 

(Laws, 1999; Laws 2004). Further supporting the deep biological root of the sensitivity 

to living things, research has shown that children develop their knowledge of living 

objects at a very early age (Lambon Ralph, Graham, Ellis, & Hodges, 1998; Rakison & 

Poulin-Dubois, 2001; Rostad, Yott, & Poulin-Dubois, 2012; Silveri, Cappa, Mariotti, & 

Puopolo, 2002) and their preference for living things seems to be innate because brain 

damage due to posterior cerebral artery infarctions at one day of age leads to specific 

impairment in the processing of living things (Farah & Rabinowitz, 2003).  
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An alternative perspective is the overlapping semantic features hypothesis, which 

emphasizes the greater overlap in semantic features among living objects than among 

nonliving objects (Cree & McRae, 2003; Dixon, Bub, & Arguin, 1998; Garrard et al., 

2001; Humphreys & Forde, 2001; McRae, Cree, Seidenberg, & McNorgan, 2005; 

McRae, de Sa, & Seidenberg, 1997; Sartori, Gnoato, Mariani, Prioni, & Lombardi, 2007; 

Sartori & Lombardi, 2004; Sartori, Lombardi, & Mattiuzzi, 2005; Zannino, Perri, 

Pasqualetti, Caltagirone, & Carlesimo, 2006a, 2006b; Zannino, Perri, Pasqualetti, Di 

Paola, et al., 2006). Due to the tight connection between semantic memory and episodic 

memory, the overlapping semantic features could affect episodic memory via a global 

matching mechanism (Criss & Shiffrin, 2004; McClelland, McNaughton, & O'Reilly, 

1995; Norman, 2010; O'Reilly, Bhattacharyya, Howard, & Ketz, 2014; Shiffrin, Huber, & 

Marinelli, 1995). In particular, it is proposed that items with greater global similarity (or 

shorter semantic distance) with all other studied items have stronger episodic memory 

strength (Clark & Gronlund, 1996). 

 

Consistent with the global matching hypothesis, researchers have recently used 

representational similarity analysis (RSA) (Kriegeskorte, Mur, & Bandettini, 2008) to 

study the relationship between neural global pattern similarity and memory. The basic 

idea of RSA is to examine the geometric relations (e.g., distance) of materials in certain 

representational space as well as across different levels of analyses (e.g., at the 

behavioral, computational, or neural level) (Khaligh-Razavi & Kriegeskorte, 2014; 

Kriegeskorte, Mur, Ruff, et al., 2008; Su, Zulfiqar, Jamshed, Fonteneau, & Marslen-

Wilson, 2014). For example, previous studies have found that items with high neural 

pattern similarity as measured by fMRI (Davis, Xue, Love, Preston, & Poldrack, 2014; 

LaRocque et al., 2013) or EEG (Lu, Wang, Chen, & Xue, 2015) were associated with 

better recognition memory. Specifically, Davis et al. (2014) found that neural global 

pattern similarity in the MTL, which reflects the representational overlap with other 

studied items, was correlated significantly with recognition confidence of words. Using 

high-resolution fMRI that enables the discovery of finer functional dissociations in the 

MTL, LaRocque et al. (2013) found that better memory was associated with greater 
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neural global pattern similarity in both perirhinal cortex and parahippocampal cortex, but 

with greater pattern distinctiveness in the hippocampus.  

 

The current study used fMRI to test the attentional bias hypothesis and the overlapping 

semantic features hypothesis. Based on the attentional bias hypothesis, we would 

expect that (a) compared to nonliving words, living words would be processed with 

greater attention as shown by greater activation in attention-related brain regions, such 

as the dorsal frontoparietal network (for a review, see Corbetta et al., 2008; also see 

(Kim, 2011; Uncapher & Wagner, 2009) and (b) the differences in brain activation 

between living vs. nonliving words would explain (i.e., mediate) the animacy effect of 

memory. In contrast, based on the overlapping semantic features hypothesis, we would 

expect that compared to nonliving words, living words would show a greater overlap in 

semantic features and in neural representations (i.e., greater neural global pattern 

similarity), which would in turn explain (i.e., mediate) the animacy effect in memory. 

Because we wanted to account for the differences in episodic memory of living vs. 

nonliving words, we focused on brain regions where the activation level or global neural 

pattern similarity could predict subsequent memory. 

 

Materials and Methods 

Participants and experiment design 

Detailed information regarding the participants, experimental design, behavioral data 

analysis, and functional magnetic resonance imaging (MRI) data preprocessing can be 

found in Supplementary Material of our previously published paper (Xue et al., 2010). 

Briefly, 22 subjects (11 males, mean age = 19.56 ± 1.76 years, ranging from 17 to 25 

years) participated in this study. They studied 60 high-frequency Chinese nouns (with 

half representing living objects (e.g. bee, ant, frog and monkey) and half representing 

nonliving objects (e.g. chair, gate, match and pillar)) in the scanner over three scanning 

runs. The living words and nonliving words were matched in terms of word frequency 

(living: 4560 ±15.20/million; nonliving: 4545 ± 21.24/million, t (58) = 0.014, p = .989) and 

stroke number (living: 15.17 ± 5.24; nonliving: 15.73 ± 4.21, t (58) = -0.462, p = .646).  
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Each item was repeated three times. A slow event-related design (12 s for each trial) 

was used in this study (Fig. 1A) to obtain better estimates of single-trial BOLD 

response. The trial started with a 1 s fixation point, followed by a Chinese word that was 

presented on the screen for 3 s (or until a response was made, whichever came first). 

Subjects were asked to make a semantic judgment (i.e. living or nonliving) about the 

word by pressing a button with their left or right thumb. To prevent further encoding of 

the word, three seconds after the onset of the word, subjects were asked to perform a 

perceptual judgment task (to judge the orientation of a Gabor image tilting 45° to the left 

or the right) for 8 s. A self-paced procedure was used to make this task engaging.  

 

Thirty minutes after the scan, subjects were asked to perform two unexpected memory 

tests. In the first test (i.e. the free recall test), subjects were asked to write down the 

words they had studied in the scanner, regardless of the order of presentation. After the 

free recall test, they were given a recognition test and asked to judge whether a word 

was old or new on a 6-point scale, with 1 indicating definitely new and 6 indicating 

definitely old. In this test, 60 original words and 60 foils (30 living words and 30 nonliving 

words) were randomly mixed and presented one by one. The present analysis focused 

on the recognition test because the global match hypothesis was mainly developed to 

account for recognition memory performance (Norman, 2010). 

 

fMRI image data acquisition 

Scanning was carried out in the MRI Center of Beijing Normal University using a 3.0T 

Siemens MRI scanner with an 8-channel head coil. Functional data were acquired using 

T2*-weighted EPI (FOV = 200 * 200mm; matrix = 64 * 64; slice thickness = 4mm; 

TR/TE/θ = 2s/30ms/90°). Thirty contiguous axial slices par allel to the AC-PC line were 

obtained to cover the whole cerebrum and partial cerebellum. High-resolution structural 

images using gradient-echo pulse-sequence were acquired for the whole brain (FOV = 

256 * 256mm; matrix = 192 * 256; slice thickness = 1.33mm; TR/TE/θ = 

2530ms/3.39ms/7°). 

 

Behavioral data analysis 
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Reaction time and accuracy data were collected and analyzed according to the 

subsequent memory performance and the stimuli’s semantic categories. For memory 

performance, items recognized with high confidence (scored 6) were defined as 

remembered items (R) and those scored 4 and lower were defined as forgotten items 

(F). Both the ratio of recognized items and d’ were used to measure memory 

performance. Paired t test was conducted to examine the effect of semantic category on 

subsequent memory performance. Repeated measure ANOVA was used to examine 

behavioral data from the encoding task. 

 

Semantic similarity rating 

Eight additional native Chinese college students (four males) were recruited to rate the 

pair-wise semantic similarity of the 60 words on a 7-point scale. Subjects were told to 

rate the similarity of each pair of words based on their meanings. There were 1770 pairs 

in total, which were randomly separated into 9 groups. Subjects took a short break after 

finishing a group. Second-order similarity (Islam & Inkpen, 2006) was calculated by 

computing correlations between the raw rating vectors of two items. The rationale 

behind the use of second-order similarity is that words that are similar to each other 

should show similar profiles of relations with all other items. This second-order similarity 

measure has been shown to reduce within-subject noise in the ratings, and to be more 

reliable than the first-order similarity index (Davis et al., 2014). 

 

fMRI imaging preprocessing 

Image preprocessing and statistical analyses were carried out using FEAT (FMRI 

Expert Analysis Tool) version 5.98. The first three volumes before the task were 

automatically discarded by the scanner to allow for T1 equilibrium. The remaining 

images were then realigned, spatially smoothed (only for activation-based analysis) with 

a 5mm full-width-half-maximum (FWHM) Gaussian kernel, and temporally filtered 

(nonlinear highpass filter with a 90s cut-off). The EPI images were first registered to the 

magnetization-prepared rapid gradient echo (MPRAGE) structural image and then into 

the standard Montreal Neurological Institute (MNI) space, using affine transformations. 

Registration from structural images to the standard space was further refined using 
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FNIRT nonlinear registration. 

 

Activation-based analysis 

As mentioned in Introduction, this study focused on the animacy effect in memory, so 

we first identified brain regions whose activation was related to episodic memory. We 

examined the subsequent memory effect (SME) using the GLM model implemented 

within the FILM module of FSL. The recognized and forgotten words were separately 

modeled. Trials scored 5 from the recognition task were treated as a nuisance variable. 

The incorrect trials from the perceptual orientation task were coded as an additional 

nuisance variable, whereas the correct orientation trials were not coded and thus were 

treated as an implicit baseline. The SME was defined as the differences between 

recognized and forgotten words. A higher-level analysis involved cross-run contrasts for 

each subject using a fixed-effects model. These contrasts were then used for group 

analysis with a random-effects model, using FLAME (FMRIB’s Local Analysis of Mixed 

Effect) stage 1 only with automatic outlier detection (Beckmann, Jenkinson, & Smith, 

2003; Woolrich, 2008; Woolrich, Behrens, Beckmann, Jenkinson, & Smith, 2004). 

Because we were interested in the activation differences between living and nonliving 

words in the brain regions that showed the SME, we used a relatively liberal threshold 

to find these regions (z > 2 and a cluster probability of p < 0.05, corrected for whole-

brain multiple comparisons using Gaussian random field theory).  

 

Then we tested whether living words showed greater neural activation than nonliving 

words within the SME-sensitive ROIs. Because of our special focus on the attention 

network, we also defined two masks in the dorsal attention network, including the dorsal 

frontal cortex and dorsal parietal cortex, based on the Harvard-Oxford probabilistic atlas 

(25% threshold, 2mm). The dorsal frontal cortex included bilateral precentral sulcus and 

the middle frontal gyrus, while the dorsal parietal cortex included both the intraparietal 

sulcus and superior parietal lobule (Corbetta, Patel, & Shulman, 2008; Kim, 2011; 

Uncapher & Wagner, 2009). Signals within the SME-sensitive ROIs and the dorsal 

frontal and parietal ROIs were extracted from single-item estimation, separately for each 

subject and each item. Mixed-effects model (see below) was then performed with 
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activation level as the dependent variable and animacy category (living vs. nonliving) as 

the predictor, and subjects as a random effect. Finally, mediation effect was tested to 

see whether higher activation in living words within SME-sensitive ROIs could mediate 

the animacy effect in memory. 

 

Mixed-effects model  

Mixed-effects modeling is a powerful statistical tool that offers many advantages over 

conventional t test, regression, and ANOVA in sophisticated fMRI designs (Mumford & 

Poldrack, 2007; Ward, Chun, & Kuhl, 2013), especially when the number of trials differs 

by condition and/or across participants (e.g., in this study, participants remembered 

different numbers of words). In this study, the mixed-effects model was implemented 

with lme4 in R (Bates D, 2012). We used the likelihood ratio test to compare the models 

(with vs. without the predictor) to determine the effect of the predictor. 

 

Mediation analysis 

We performed the mediation effect test to examine whether the neural indices 

(activation level or nGPS) mediated the animacy effect in memory performance. We 

examined the relationship between 1) semantic category and memory performance (Y = 

a1 + b1X + ε1); 2) semantic category and neural response (activation level or nGPS) (M 

= a2 + b2X + ε2); and 3) semantic category and memory performance with mediator (Y = 

a3 + b3X + bM + ε3).  In the equations, Y is the dependent variable (memory 

performance: remembered or forgotten; binary variable), X is the predictor (semantic 

category: living or nonliving; binary variable), and M is the mediator (neural indices, 

activation level or nGPS in separate models; continuous variable). The indirect effect 

was estimated as b2 * b. We used distribution-of-the-product method to compute CIs; 

this method has been proved to be more accurate when the sample size is small 

(MacKinnon, Lockwood, Hoffman, West, & Sheets, 2002). Mediation effect size (R2
ind) 

was also presented according to the equation R2
ind = R2

tot - R
2
dir (Fairchild, Mackinnon, 

Taborga, & Taylor, 2009).  

 

Neural global pattern similarity analysis  
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For pattern similarity analysis, we first estimated the single-item response. GLM was 

performed to compute the β-map for each of the 60 unique word stimuli. All three 

presentations of each stimulus were used as one single regressor, in which the 

presentation of each stimulus was modeled as an impulse and convolved with a 

canonical hemodynamic response function (double gamma) (Mumford, Turner, Ashby, 

& Poldrack, 2012).  

 

Again we first identified the SME-sensitive brain regions using the searchlight method 

(Kriegeskorte, Goebel, & Bandettini, 2006) as described in Davis et al. (2014). For each 

voxel, signals were extracted from the cubic ROI containing 125 surrounding voxels. For 

each item, averaged pair-wise correlation was calculated between the item and all other 

words. These similarity scores were transformed into Fisher’s z scores. Instead of using 

a parametric analysis to examine the relationship between memory strength and neural 

global pattern similarity (nGPS) (Davis et al., 2014), here we compared the differences 

between recognized (scored 6) and forgotten words (scored 1 to 4) to be consistent with 

the activation-based analysis.  

 

We focused on the MTL, as its neural activation pattern has been suggested to reflect 

global match (LaRocque et al., 2013; O'Reilly et al., 2014). We also anatomically 

defined the anterior temporal lobe (ATL) and the middle temporal gyrus (MTG) (Binney, 

Embleton, Jefferies, Parker, & Ralph, 2010) because their involvement in semantic 

representation. The MTL(bilateral hippocampus and the parahippocampus gyrus), ATL 

(bilateral temporal pole and the anterior part of the superior temporal gyrus), and MTG 

(bilateral middle temporal gyrus) were defined based on the Harvard-Oxford 

probabilistic atlas included in the FSL package (threshold at 25% probability), and were 

used for small-volume correction. 

 

Focusing on the regions that showed the SME in nGPS, we further examined whether 

nGPS differed between living and nonliving words. Similar to the activation-based 

analysis, the βvalue was extracted from each voxel within each ROI, separately for 

each word and each subject. The nGPS within each ROI was calculated using the 
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methods described above. Mixed-effects model was then applied with nGPS as the 

dependent variable to examine the animacy effect on nGPS. Finally, mediation effect 

test was performed to test whether higher nGPS in living words within SME-sensitive 

ROIs could mediate the animacy effect in memory.  

 

Results 

Behavioral results 

Memory performance of living and nonliving words 

As predicted, subjects recognized with high confidence significantly more living words 

(mean = 79.24%, SD = 13.01) than nonliving words (mean = 62.58%, SD = 16.81; t (21) 

= 6.640, p < .001). The overall false alarm rate was low, 5.99% (SD = 4.79). However, 

consistent with the global match hypothesis, the false alarm rate was significantly higher 

for living than nonliving words (t (21) = 2.625, p = .016). The unbiased index d’ for living 

words (mean = 2.41, SD = 0.47) was also significantly higher than that for nonliving 

words (mean = 2.11, SD = 0.46; t (21) = 2.646, p = .015) (Figure 2A). 

 

Behavioral performance during encoding 

We performed semantic category (nonliving vs. living) by repetition (first rep vs. second 

rep vs. third rep) by subsequent memory (remembered vs. forgotten) three-way 

repeated measure ANOVA on reaction time and accuracy during encoding. Reaction 

time was shorter for living words than for nonliving words (F(1,21) = 8.723, p = .008). 

There was a significant repetition priming effect (F(1,21) = 46.492, p < .0001). However, 

there was no significant subsequent memory effect for RT (F(1,21) = 1.435, p = .244). 

Also, there was not any significant interaction effect (all p’s > .3)(Figure 2B).  

 

Accuracy was high and did not differ across conditions (mean = 0.976, SD = 0.034). 

Three-way repeated measure ANOVA revealed no significant effect of subsequent 

memory performance (F(1,21) = 2.345, p = .141), semantic category (F(1,21) = 0.057, p 

= .814), or repetition priming (F(1,21) = 0.728, p = .489). There was also no significant 

interaction effect (all p’s > .2)(Figure 2C). 
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Semantic distance differences between living and nonliving words 

As expected, compared to the raw ratings of (first-order) similarity, the second-order 

similarity was more reliable: The intra-class correlations (cross-subjects) were 0.65 and 

0.77, for first- and second-order similarity, respectively. Using the second-order 

similarity (Figure 3A), the three-dimensional scaling analysis of pair-wise similarities 

captured a clear semantic category structure (Figure 3B).  We then calculated the global 

semantic similarity of each word by averaging the z-transformed pair-wise similarity 

between a given word and all other words. This analysis revealed significantly higher 

global semantic similarity for living words than for nonliving words (t (29) = 4.097, p = 

.0003; Figure 3C). Further analysis indicated that the higher global semantic similarity 

for living words was caused by the significantly higher within-category similarity (t (29) = 

7.236, p < .0001; Figure 3C), whereas the between-category similarity was comparable 

(t (29) = 0.0008, p = .9994; Figure 3C). 

 

fMRI results 

The attention network and the animacy effect in memory  

The attentional bias hypothesis predicted that activations in the attention network would 

show the animacy effect, which would in turn explain/mediate the animacy effect in 

memory. In order to test these hypotheses, we first identified brain regions with the 

subsequent memory effect (SME) by contrasting remembered vs. forgotten words. 

Whole-brain analysis revealed several brain regions showing the SME, including the left 

orbital frontal cortex (LOFC, −20, 14, −22, Z = 3.17), left hippocampus (LHIP, −30, -16, 

−22, Z = 3.16), the anterior segment of left parahippocampus gyrus (LaPHG, −16, 0, 

−24, Z = 2.86), left occipital cortex (LLOC, −24, −66, 18, Z = 3.43), and right temporal 

occipital fusiform (RFG, 48, −58, −18, Z = 3.27) (Figure 4). However, no significant 

effect was found in the dorsal attention network. 

 

Focusing on regions showing the SME, we then examined the animacy effect with a 

mixed-effects model. In this model, activation level was the dependent variable and 

semantic category was the predictor, and subjects were included as random effects. 

The results revealed that living words showed significantly higher activation in LHIP 
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(χ2(1) = 8.418, p = .0185, after Bonferroni correction for the number of regions). The 

LaPHG (χ2(1) = 5.496, p = .095, corrected) showed a trend of significant differences 

after correction. No significant difference was found in RFG, LFOC and LLOC (all p’s > 

.15, uncorrected) (Fig. 4A). 

 

Finally, a mediation analysis (Tofighi & MacKinnon, 2011) was conducted to examine 

whether the greater activation level of living words mediated the animacy effect in 

memory performance. This analysis revealed a significant mediation effect in LHIP 

(product of coefficients = 0.045, SE = 0.022, 95% CI is [0.008, 0.092], effect size = 

0.041) (Fig.4B), but not in the LaPHG (product of coefficients = 0.034, SE = 0.022, 95% 

CI is [-0.004, 0.082]). 

  

Although the above whole-brain analyses did not support the attentional bias 

hypothesis, ROI analyses focusing on the dorsal attention network would provide a 

more stringent test. Additional small volume correction was performed in the dorsal 

frontal and parietal cortices (see materials and methods). Results showed a higher 

activation level for living words than for nonliving words in the left dorsolateral prefrontal 

cortex (DLPFC, -52, 14, 32, Z = 3.53), but the mixed-effects model showed no 

significant SME (χ2(1) = 2.225, p = .136) and no significant mediation (χ2(3) = 1.837, p = 

.607, uncorrected).   

 

Neural GPS in LpPHG and the animacy effect in memory 

The overlapping semantic features hypothesis predicted that nGPS would show the 

animacy effect, which in turn would explain the animacy effect in memory. In addition, 

nGPS was expected to be correlated with semantic distance. Similar to the above 

analyses on activations, we focused on brain regions showing the SME. Using a 

searchlight procedure with a focus on the MTL, ATL and MTG (Fig. 5A), we found 

significant SME (remembered > forgotten) in nGPS in the left hippocampus (LHIP, −20, 

-30, −8, Z = 3.79) and the posterior portion of the left parahippocampus (LpPHG, −32, -

34, −16, Z = 3.68)(Fig. 5B). These results were similar to those found using parametric 

analysis (Davis et al., 2014). No significant clusters were found in the ATL or MTG. 
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These results were consistent with previous studies that found no semantic 

representation in these regions (Bedny & Thompson-Schill, 2006; Binney et al., 2010; 

Copland et al., 2003; Devlin, Matthews, & Rushworth, 2003; C. L. Liu et al., 2006). It 

should be noted that the susceptibility artifacts (i.e., artifacts due to differences in 

magnetic susceptibilities of materials, especially around air-tissue interfaces) might 

have reduced the signal-to-noise ratio in these regions, thus reducing the power to 

detect the effect.  

 

The mixed-effects model revealed a strong animacy effect of nGPS (living > nonliving) 

in the LpPHG (χ2(1) = 6.874, p = .009), but not in the LHIP (χ2 (1) = 2.106, p = .147, 

uncorrected) (Fig. 5C). Moreover, the above findings did not change even when the 

activation level in the respective region was added as a covariate (LpPHG: χ2(1) = 

7.248, p = 0.007; LHIP (χ2 (1) = 2.067, p = 0.149, uncorrected). Further analysis 

revealed that the higher nGPS in LpPHG for living words was primarily driven by their 

higher within-category similarity (χ2(1) = 12.204, p < .001), whereas living and nonliving 

words showed comparable between-category similarity (χ2(1) = .305, p = .581) (Fig. 5C). 

 

We further examined the association between nGPS and semantic global similarity and 

found that nGPS in the LpPHG was strongly and positively associated with semantic 

similarity (χ2(1) = 76.033, p < .0001), suggesting that the nGPS reflects the semantic 

similarity.  Finally, mediation analysis revealed that nGPS in the LpPHG significantly 

mediated the animacy effect in memory performance (product of coefficients = 0.028, 

SE = 0.016, 95% CI is [0.003, 0.065], effect size = 0.038) (Fig. 5D).  

 

Discussion 

The current study aimed at examining the neural mechanisms underlying the animacy 

effect in memory, i.e., living words are better remembered than nonliving words. In 

particular, we tested whether this effect could be attributed to higher attention and/or 

greater neural global pattern similarity (nGPS) for living words than nonliving words 

because both attention and nGPS have been linked to better memory performance (See 

Introduction). Our results provide strong support for the overlapping representation 
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account but weak support for the attention account, at least under the current 

experimental condition. 

 

Existing studies have consistently revealed greater semantic similarity for living words 

than for nonliving words (Cree & McRae, 2003; Dixon et al., 1998; Garrard et al., 2001; 

Humphreys & Forde, 2001; McRae et al., 2005; McRae et al., 1997; Sartori et al., 2007; 

Sartori & Lombardi, 2004; Sartori et al., 2005; Zannino, Perri, et al., 2006a, 2006b). To 

generate the semantic similarity measures, researchers have asked subjects to produce 

the features they think are central to a given concept (McRae et al., 2005). These 

feature norms (lists of features and corresponding frequencies) were then subjected to 

different algorithms (e.g., cosine correlation or χ2 distance) to calculate semantic 

similarity across words. Because such feature norms are not available for Chinese 

words, the present study measured semantic similarity based on participants’ subjective 

ratings of semantic similarity for each pair of concepts. Multi-dimensional scaling 

revealed a clear structure for animacy categories, with living words clustered more 

closely with one another than nonliving words. Although we could have used the feature 

norms from the English translations of the Chinese words, there does not exist an exact 

word-by-word correspondence between the two languages. Furthermore, the feature 

norm approach in general does not consider the weight of each feature’s contribution to 

the overall similarity, nor does it consider the interaction between features, which might 

undermine the calculation of semantic similarity. 

 

Although living things are overall more similar to each other than are nonliving things, 

researchers have also found opposite results in some special cases. For example, 

nonliving things showed greater within-category (structural) similarity than did living 

things when pictures were used (Gale & Laws, 2006; Laws & Gale, 2002; Laws & Neve, 

1999; Marques, Raposo, & Almeida, 2013) or when particular subcategories of living 

(i.e., body parts) and nonliving things (i.e., musical instruments) were used (Laws, Gale, 

Frank, & Davey, 2002). Nevertheless, these studies converged with the other studies to 

show that higher similarity (either semantic or structural similarity) is associated with 

more processing errors (i.e. naming) but better memory (Laws & Gale, 2002; Zannino, 
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Perri, Pasqualetti, Di Paola, et al., 2006). These results provide further evidence to 

support the global matching hypothesis, which would predict that the overlap of 

representations during encoding would lead to better memory. The current study 

focused on semantic features because a semantic judgment task using words as stimuli 

was used. Future research should use different encoding tasks, and different types of 

stimuli (words vs. pictures) from certain semantic subcategories, to further test the 

global matching hypothesis. These studies would also help to specify the representation 

features that contribute to the global similarity measures and memory performance. 

  

Furthermore, we found that the subjective ratings of similarity were associated with 

nGPS. Specifically, we used representational similarity analysis (RSA) (Kriegeskorte, 

Mur, & Bandettini, 2008) and found that nGPS was correlated with subjective similarity 

across word pairs and that nGPS was greater for living words than for nonliving words. 

This finding is consistent with the growing evidence that neural activity patterns could 

reflect mental representations (Kriegeskorte & Kievit, 2013). For example, based on 

multivoxel pattern analysis, brain activity patterns have been found to reflect behavioral 

category judgment of real-world materials (Hiramatsu, Goda, & Komatsu, 2011), 

category structure of animate concepts (Connolly et al., 2012), behavioral judgment of 

perceptual similarity (Mur et al., 2013),  as well as the individuals’ unique perceptual 

judgment (Charest, Kievit, Schmitz, Deca, & Kriegeskorte, 2014). Our results add to this 

literature by showing that neural activity patterns may reflect the semantic 

representations of living and nonliving words. 

 

More importantly, our results clearly suggest that nGPS provides a mechanistic 

understanding of the mnemonic advantages of living concepts. Consistent with the 

global match theory (for a review, see Clark and Gronlund, 1996), the current study 

corroborates recent neuroimaging evidence that a higher level of overlapping 

representations benefits memory performance (Davis et al., 2014; LaRocque et al., 

2013; Lu et al., 2015). We found that living words elicited greater nGPS in LpPHG than 

did nonliving words, and that the nGPS in this region significantly mediated the animacy 

effect in memory. This mediation effect was robust even after we added the activation 
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level in this region and LHIP activity (which also mediated the animacy effect, see 

below) as covariate factors. 

 

The parahippocampal gyrus (PHG) has been consistently implicated in recognition 

memory. In particular, recent representational-hierarchical account argues that the 

highly conjunctive representation in PHG is required to differentiate confusable items 

(Barense et al., 2012; Bussey & Saksida, 2005; Cowell, Bussey, & Saksida, 2006; 

McTighe, Cowell, Winters, Bussey, & Saksida, 2010). This representational-hierarchical 

view states that MTL cortex represents highly complex conjunctive features. When MTL 

cortex is intact, conjunctive representations make a given memory distinctive from 

interferences. When MTL cortex is impaired, judgments have to be made based on 

highly susceptible simple feature representations, which can lead to false alarms. 

Consistent with this view, a recent lesion study suggests that the PHG is responsible for 

the elevated false positives for living distractors (high interference) than nonliving 

distractors (Kivisaari, Monsch, & Taylor, 2013). By linking the neural representations in 

the PHG with memory performance, our results could account for both true and false 

memories as observed in the current study and in the Kivisaari et al. (2013).  

 

Using RSA on data from pictures representing living and nonliving objects, a recent 

study revealed a gradient of informational specificity: Whereas the early visual cortex 

represented image-based visual properties, and the posterior ventral stream 

represented the categorical information, the anterior part of the PHG (perirhinal cortex) 

uniquely represented object-specific semantic information and was engaged in the 

processing of semantically confusable objects (Clarke & Tyler, 2014). This highly 

conjunctive object-specific representation in the PHG provides an important insight 

regarding the mechanisms involved in the rejection of novel yet confusable items. The 

PHG showing semantic similarity in the current study was more posterior than that 

found in the previous study. Currently, it is not clear whether this difference could be 

due to the use of different stimuli (words vs. pictures). Importantly, the current study is 

limited in its practical spatial resolution due to the use of standard image acquisition 

resolution (3mm cubic) and the searchlight method (12mm sphere). Future studies 
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should use high-resolution imaging and individualized ROI analysis to examine the role 

of MTL sub-regions in semantic similarity and episodic memory. 

 

Consistent with previous studies (Lipp et al., 2004; New et al., 2007; Pratt, Radulescu, 

Guo, & Abrams, 2010), we found that living words were processed faster in semantic 

judgment. At the neural level, living words showed higher activity levels than nonliving 

words in the dorsal attention network, which is posited to be involved in top-down 

attention process (Corbetta et al., 2008; Kim, 2011; Xue et al., 2013). However, neither 

the response time nor activity in the dorsal attention network was found to be predictive 

of memory performance, nor did they mediate the animacy effect in memory. Indeed, 

we only found a trend of the SME in this region. One reason for the lack of SME in this 

region may be the short delay between encoding and memory test (30 minutes). On the 

one hand, the short delay led to a high overall memory performance, which might have 

undermined the power to detect the SME. On the other hand, a previous study has 

suggest that the SME in the lateral prefrontal cortex increased with the delay between 

study and test, with stronger lateral prefrontal cortex activity supporting more durable 

memories (Q. Liu, Dong, Chen, & Xue, 2014). Future studies should increase the delay 

to see whether attention contributes to the animacy effect.  

 

As mentioned earlier, stronger activation in the LHIP for living words than for nonliving 

words also mediated the animacy effect. According to a recent review (Brod, Werkle-

Bergner, & Shing, 2013), the hippocampus plays a prominent role in linking prior 

knowledge to memory encoding. In particular, the hippocampus is suggested to 

integrate information to form a context for memory, which is then bound to new inputs to 

form episodic memories (Mizumori, 2013). Based on this assumption, higher activation 

in the LHIP during encoding could suggest greater context building and also better 

memory performance. In the current study, since living words were found to share more 

semantic features than nonliving words, the greater activations in the LHIP could reflect 

a stronger attempt to build semantic contexts for living words, as suggested by the 

context retrieval models (Howard & Kahana, 2002; Morton et al., 2013; Polyn, Norman, 

& Kahana, 2009). Specifically, during encoding, category-specific retrieval cues were 
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constructed to allow them to target items from certain categories during memory search. 

Using EEG to characterize category-specific oscillatory activity, Morton (2013) found 

that as multiple same-category items were studied sequentially, item-specific patterns 

decreased in strength whereas category-specific patterns increased in strength. The 

strength of category-specific patterns in the temporal lobe predicted items’ subsequent 

memory performance.  

 

The interplay between semantic memory and episodic memory is further supported by 

lesion studies. For example, patients with semantic dementia show impairment in 

episodic memory (Graham, Simons, Pratt, Patterson, & Hodges, 2000; Irish, Addis, 

Hodges, & Piguet, 2012; Maguire, Kumaran, Hassabis, & Kopelman, 2010). Notably, 

although Tulving’s (1995) SPI model posits that the encoding is serial (i.e., perceptual 

information is input to semantic memory, and then episodic memory is based on the 

output from semantic memory), Graham’s (2000) study found that semantic deficit could 

only impair episodic memory when the perceptual cues were not available. This finding 

suggests that perceptual information could provide direct input to the episodic memory 

system to aid memory. Future studies should examine whether the global match 

mechanism could operate on the perceptual features, by using the approach proposed 

in the current study.  

 

In summary, our research found that nGPS reflected the nature of semantic 

organization, with living words showing a greater overlap in semantic features than 

nonliving words, which led to better memory performance for the former. This finding 

thus provides neural evidence to support the interaction between semantic memory and 

episodic memory. Nevertheless, the semantic similarity ratings used in the current study 

provide only one of many possible ways to describe semantic representations (Griffiths, 

Steyvers, & Tenenbaum, 2007; Zhao, Li, & Kohonen, 2011), future studies should 

examine whether alternative methods would provide a better account of the interaction 

between semantic memory and episodic memory. Furthermore, it is still unclear what is 

the “memory signal” driven by the neural global match (Norman, 2010). Future research 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 20

needs to understand how the brain works to obtain the global match information to aid 

memory performance. 
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Figure 1. Experiment design and data analysis. (A) A slow event-related design (12s 

for each trial) was used to improve the accuracy in the estimation of single-trial 

responses. Each trial started with 1s fixation. Each word was presented for 3s. 

Participants were asked to judge whether the word represents a living or nonliving 

object. To prevent further encoding of the word, a series of Gabor images were 

presented during the 8s inter-trial-interval, and subjects were asked to judge the 

orientation of the Gabor images as quickly and accurately as possible. (B) 

Calculation of neural pattern similarity. Pearson correlations were performed for 

each participant for each stimulus to assess neural pattern similarity. Global pattern 

similarity (GPS) was calculated by averaging the z-transformed correlations between 

one item with all other items. This GPS could be further decomposed into within-

category (WC) similarity and across-category (AC) similarity.  

Figure 2. Behavioral results. (A) Memory performance. The left y-axis represents the 

percentage of hit (left two bars) or false alarm (FA, two bars in the middle), and the 

right y-axis represents the d’. (B) Reaction time and (C) accuracy during the 

semantic judgment task, as a function of subsequent memory, semantic category, 

and repetitions. Error bars represent within-subject error. R: recognized; F: forgotten; 

N: nonliving; L: living. **p < .01, *p < .05. 

Figure 3. Semantic similarity. (A) Similarity matrix of subjective ratings of words. 

Secondary pair-wise similarities were averaged across subjects for each item. Living 

words showed higher global similarity than did nonliving words. (B) Multidimensional 

scaling of pairwise similarities of words’ semantic similarity. Distances between 

items in the plot depict dissimilarities between their respective semantic similarities 

in the semantic space. (C) Global semantic similarity as a function of semantic 

categories. Error bars represent the within-subject error. **p < .01.  
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Figure 4. The animacy effect in activation level.  (A) The animacy effect in brain 

regions sensitive to SME. Focusing on the five clusters showing significant 

subsequent memory effects, including the LHIP, LaPHG, LOFC, LLOC and RFG (as 

shown on the activation map), mixed-effect models revealed significant animacy 

effects (greater activation for living words than for nonliving words) in the LHIP (p = 

.019, corrected) and marginally significant effect in the LaPHG (p = .09, corrected). 

Error bars represent the within-subject error. (B) Mediation analysis showed that the 

better memory performance for the living words was mediated by the mean 

activation level in LHIP. ***p < .001, *p <.05, #p < .1. 

Figure 5. The animacy effect in neural global pattern similarity (nGPS). (A) The MTL 

and ATL mask (based on the Harvard-Oxford probabilistic anatomical atlas, 

thresholded at 25% probability; purple: hippocampus; green: parahippocampus 

gyrus; yellow: anterior temporal lobe; blue: MTG). (B) The subsequent memory 

effect in the left MTL based on small volume correction (z = 2.3, p < 0.05). The 

nGPS in the left hippocampus and the posterior segment of left parahippocampus 

were sensitive to memory performance. (C) Differences between living and nonliving 

words in nGPS. The error bars represent within-subject error. * indicates significant 

results based on the mixed-effects model test (uncorrected). (D) Mediation analysis 

showed that better memory performance for living words was driven by higher nGPS 

in left posterior segment of the parahippocampus. *** p < .001,** p < .01. 
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