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A cognitive neurogenetic approach to unco-
vering the structure of executive functions

Junjiao Feng1,2, Liang Zhang 1, Chunhui Chen 1, Jintao Sheng1, Zhifang Ye 1,
Kanyin Feng1, Jing Liu1, Ying Cai3, Bi Zhu1, Zhaoxia Yu 4, Chuansheng Chen5,
Qi Dong1 & Gui Xue 1

One central mission of cognitive neuroscience is to understand the ontology
of complex cognitive functions. We addressed this question with a cognitive
neurogenetic approachusing a large-scale dataset of executive functions (EFs),
whole-brain resting-state functional connectivity, and genetic polymorphisms.
We found that the bifactor model with common and shifting-specific com-
ponents not only was parsimonious but also showed maximal dissociations
among the EF components at behavioral, neural, and genetic levels. In parti-
cular, the genes with enhanced expression in the middle frontal gyrus (MFG)
and the subcallosal cingulate gyrus (SCG) showed enrichment for the common
and shifting-specific component, respectively. Finally, High-dimensional
mediation models further revealed that the functional connectivity patterns
significantly mediated the genetic effect on the common EF component. Our
study not only reveals insights into the ontology of EFs and their neurogenetic
basis, but also provides useful tools to uncover the structure of complex
constructs of human cognition.

Theontologyofmental constructs serves as thebuildingblocks forour
understanding of the human brain and cognition1. Yet, as noted by
William Uttal2 “hypothetical psychological constructs are invented ad
lib and ad hoc without adequate consideration of the fundamental
issue of the very plausibility of the precise definition”. One major
challenge in uncovering the ontology of complex human cognition is
to extract the latent, hypothetical mental constructs from the cogni-
tive tasksdesigned supposedly to tap them.Although researchers have
cautioned about the danger of conflating latent constructs with
operational measures3, it remains a common practice in cognitive
neuroscience to equate task with construct1, resulting in construct
impurity4. Here, we propose an integrative, data-driven, gene-brain-
behavior approach as a framework to discover the ontology of mental
constructs.

We focused on the structure of executive functions (EFs), which is
particularly interesting and important not only because EFs play a key

role in achieving goal-directed behavior4,5 but also due to their com-
plex structure and the methodological challenges involved. Previous
studies have demonstrated that EFs are closely related to many cog-
nitive functions, such as creativity6,7, intelligence6,8,9, attention10,
reasoning11, reading11, and arithmetic11. Furthermore, deficits in EFs
have been linked to many mental disorders, such as attention-deficit
hyperactivity disorders (ADHD)12, schizophrenia (SCZ)13,14, Alzheimer’s
disease15, and autism16. Therefore, revealing the structure of EFs can
contribute to a better understanding of the nature of EFs and their
relationship with other cognitive functions, as well as the nature of
brain dysfunctions in neurological and psychiatric disorders.

Previous studies have attempted to reveal the structure ofmental
processes by testing a large sample of subjects with several different
tasks17,18, but the results are mixed. Early studies used confirmatory
factor analysis (CFA) to examine the structure of EFs in terms of three
core EF components, including inhibiting, updating, and shifting18,19.
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However, because the three components are also significantly corre-
lated with one another, later studies concluded that the “Common +
Updating-specific + Shifting-specific” bifactor model could better
characterize the nature of EFs20. These results demonstrate the “unity
and diversity” characteristics of EFs4,18,21.

Moving beyond the pure behavioral model of EFs, researchers
have recently argued that we should use biological discoveries to
inform the continual development of psychological theories1. The
underlying logic is that a more biologically plausible model of EFs
should have its components rooted in clearly dissociated neural sub-
strates (see Friedman et al.4 for a review). Thus far, researchers have
used three strategies to integrate biological (mainly neural) data into
EF models. One strategy is to record participants’ brain activity when
performing multiple EF tasks and use conjunction and interaction
analyses to identify the common and domain-specific neural sub-
strates, respectively22. Due to the high cost of scanning many subjects
withmultiple tasks, existing studies have included few subjects and/or
few tasks22,23, which inevitably led to unreliable results or impurity of EF
components4. Moreover, the task-evoked approaches also face several
other challenges, such as isolating various task components involved
in a given cognitive task and identifying the specific brain-behavior
associations1.

The second approach is to use large-scale Meta-Analytic
Structure-to-Function Mapping24, which has been applied to decode a
large number of cognitive tasks25, manually annotated mental
processes26, and various task features27. This approach provides a
scalable and economical tool for ontology discovery of complex traits
and hypothesis generation. Nevertheless, the meta-analytic approach
is still under development, and the identification of mental constructs
and brain-behavioral mapping still needs further improvement.

The third strategy is to take an individual difference approach by
developing a large-scale brain-behavior database and associating
individuals’ latent component scores of EFs with brain measures. This
strategy typically relies on structural MRI28,29, or resting-state fMRI30,31,
and sometimes task fMRI with a few tasks32,33, because they are less
time consuming and more cost-efficient than scanning all tasks and
thus allow for a larger sample size and leave time for more out-of-
scanner behavioral tasks. Nevertheless, most studies usually used a
small number of behavioral tasks and/or a small sample. More criti-
cally, they used neural data only to verify their pre-defined model of
mental structure rather than to assess several candidate models.

To overcome the above limitations, we proposed a cognitive
neurogenetic approach that integrates genetic, neural, and behavioral
data to examine the structure of EFs (Fig. 1). Specifically, we used a
large sampleofHanChinese adults (n = 2110), a comprehensivebattery
of cognitive tests (nine different EF tasks), whole-genome scans (a
subsample, n = 1454), and resting-state neuroimaging data (a sub-
sample, n = 870). First, we used confirmatory factor analysis (CFA) to
evaluate 12 candidate latent variable models of EFs, which yielded five
models with good fitting parameters for subsequent analyses (Fig. 1a).
Second, we further confined the five models using resting-state func-
tional connectivity data and connectivity-based predictive model.
Specifically, we selected one model whose components could be sig-
nificantly predicted by nonoverlapping brain connectivity patterns
(Fig. 1b). Third, we usedmeta-analytic data fromNeurosynth24 (https://
www.neurosynth.org) to verify the neural results and to identify the
neuronal regions associated with each component in the selected
model (Fig. 1c). Fourth, we adopted an integrative gene-brain-behavior
approach34–36 to examine the genetic dissociation and enrichment
pattern of different EF components (Fig. 1d). Finally, we applied a high-
dimensional mediation model37 to examine the genes-brain-EFs path-
way (Fig. 1e). Our study not only identifies a model of EFs that fits the
behavioral results well and is supported by neural and genetic evi-
dence, but also provides a cognitive neurogenetic approach that can
be applied to examine the structure of other complex traits.

Results
Descriptive statistics and bivariate correlations between tasks
To estimate the latent variable models of EFs, our study used nine
tasks, including three inhibiting tasks (anti-saccade, stop-signal, and
Stroop), three updating tasks (keep track, letter 3-back, and spatial 2-
back), and three shifting tasks (number–letter, color–shape, and
category switch). Detailed descriptive statistics for the nine EF tasks
used in this study are presented in Supplementary Table 1, and their
correlations are presented in Supplementary Table 2. Overall, all
dependent measures of the nine tasks showed normal distributions,
and internal consistency was high for most of the tasks (0.70–0.90),
except the Stroop task (0.33), the category switch task (0.51), and the
stop-signal task (0.55).

Note that only 1454 out of 2110 participants had data for all the
nine tasks, therefore, we used the “pairwise-complete” method when
computing the correlation between each pair of variables (see
“Methods”). Because the missingness is independent of the unob-
served value, the estimates areexpected tobeunbiased20,38. Consistent
with existing studies, the correlations among tasks were generally low
(rmean = 0.12, range: 0.01–0.32), but tasks measuring the same EF
component tended to show higher correlations with one another:
inhibiting (rmean = 0.16, range: 0.10–0.26), updating (rmean = 0.22,
range: 0.14–0.31), and shifting (rmean = 0.29, range: 0.24–0.32). Inter-
estingly, two inhibiting-related tasks (i.e., anti-saccade and stop-signal)
were also significantly correlated with the three updating-related tasks
(i.e., keep track, letter 3-back, and spatial 2-back) (rmean = 0.18, range:
0.16–0.22).

Testing the candidate models with CFA on the behavioral data
Model estimation. To examine the structure of EFs comprehensively,
we compared 12 candidate latent variablemodels based on the various
combinations of the three most commonly discussed EF components
(i.e., inhibiting [I], updating [U], and shifting [S]). Among them, five are
correlated-factors models, and the remaining seven are bifactor
models. Thefive correlated-factorsmodels include the full three-factor
model (“I + U + S”model)18, which assumes no constraints on the three
EF components; the one-general-factor model (“G” model) that
assumes no separability of the three EF components; and the three
two-factor models, which assume that two of the three components
are the same and can be combined (i.e., the “shifting = inhibiting” [“S/
I + U”] model, the “updating = inhibiting” [“U/I + S”] model, and the
“shifting = updating” [“S/U + I”] model).

In addition to the five correlated-factors models, there are seven
bifactor models. In the bifactor models used in Friedman and
Miyake4,20, a common EF component is first estimated using correla-
tions among all tasks to capture the unity of EFs. After that, three
orthogonal components (i.e., inhibiting-specific, updating-specific,
and shifting-specific) are estimated using the remaining correlations
among the inhibiting, updating, and shifting tasks, respectively. One
advantage of bifactor models is that they allow the estimation of the
relationship between other individual differences and the unity and
diversity EF components in a more direct way4. We evaluated seven
bifactor models, including a bifactor three-factor model, which con-
sists of a common EF component and three specific components, i.e.,
the “common + inhibiting-specific + updating-specific + shifting-spe-
cific”model (“C+ I +U + S”model); three models with the common EF
component and two specific components, i.e., “C+ I + S”, “C+U+ S”,
and “C+ I +U”; and threemodels with the common EF component and
one specific component, i.e., “C+ I”, “C+ S”, and “C+U”.

The model fit results are provided in Table 1. Five models,
including the “I + U + S”, “U/I + S”, “C+ I + S”, “C+U+ S”, and “C+ S”
models, met the criteria for good fit (CFI > 0.95, SRMR<0.05,
RMSEA <0.05) (Fig. 2 and see Supplementary Fig. 2 for the remaining
sevenmodels that did not fit the data very well). It is worth noting that
although the fit indices of the “C+ I +U + S” model were also good
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(CFI = 0.99, RMSEA=0.02, SRMR=0.02), the tasks’ loadings on the
inhibiting-specific component (anti-saccade: P =0.29, stop-signal:
P =0.25, Stroop: P = 0.17) and the updating-specific component (keep
track: P =0.51, spatial 2-back: P =0.49, letter 3-back: P =0.43) were not
significant. We also re-estimated the EF latent variable models using
list-wise deletion (n = 1454), and found the same five good-fit models
(Supplementary Table 3).

It is worth noting that the “G” model had the poorest fit (CFI =
0.65, RMSEA=0.08, SRMR=0.06), indicating the “diversity” of EFs,
which is consistent with the previous studies18. Meanwhile,

correlations among the three components in the “I + U + S”modelwere
significantly larger than zero, i.e., inhibiting & updating (r =0.71,
P < 1 × 10−3, uncorrected), inhibiting & shifting (r = 0.27, P < 1 × 10−3,
uncorrected), updating & shifting (r =0.23, P < 1 × 10−3, uncorrected).
These results support the “unity” pattern of EFs. It should also be
emphasized that the correlation between the updating and inhibiting
components wasmuch higher than their correlations with the shifting
component. In addition, the “U/I + S” model and “C+ S” model fit our
behavioral data well, which supports the notion that some compo-
nents of inhibiting and updating abilities are inseparable39 and that

Fig. 1 | Flowchart of this study. a Testing the candidate models with CFA on the
behavioral data. b Using the neural data to constrain the models based on the
behavioral data. c Combining CPM and Neurosynth to identify brain regions for
each component in the selected model. d Using the genetic data to constrain the
models selected based on behavioral data and to characterize the genetic archi-
tecture of EF components based on Allen Human Brain Atlas (AHBA). e The gene-
brain-behavior pathway for EF components. The yellow boxes show the sample size

and data, the gray boxes show the behavioral models, the white and blue boxes
show the intermediate products of the gene, brain, and behavioral data in the
processing pipeline, and the dark blue boxes show the final products of the gene,
brain, and behavioral data used for the pathway analysis. CPMa connectome-based
predictive model, MAGENTA Meta-Analysis Gene-set Enrichment of variaNT Asso-
ciations, AHBA the Allen Human Brain Atlas.

Article https://doi.org/10.1038/s41467-022-32383-0

Nature Communications |         (2022) 13:4588 3



their shared mechanisms can be explained by the common EF
component.

Model comparisons. Following previous studies18,20, to determine
which of these five good-fit models had the best fit to our behavioral
data, we further used the chi-square (χ2) difference test to compare
nested models40. Models are nested when the parameters of one
model are a subset of the parameters of another model. In our study,
the “U/I + S”model is nested in the full three-factor model; the “C+ S”
model is nested in the “C+U+ S” and “C+ I + S” models. As shown in
Table 2, the “I + U + S” model provided a better fit than the “U/I + S”
model (χ2diff = 33.24, P = 6.07 × 10−8, uncorrected), which was con-
sistent with the previous studies18. For the three bifactor models, the
“C+ S” model did not fit as well as the “C+U+ S” model (χ2diff = 43.29,
P = 2.14 × 10−9, uncorrected) or the “C+ I + S” model (χ2diff = 29.46,
P = 1.79 × 10−6, uncorrected). Finally, since the “C+ I + S”model and the
“C+U+ S” model had the same degrees of freedom (df), direct com-
parison of the chi-square of model-fitting suggested that the “C+U+
S” model was the best bifactor model. Taken together, our results
largely replicated published work.

Correlations of the EF components with intelligence test perfor-
mance. Previous studies suggest that EFs are related to intelligence
test performance41,42. Onemajor question is how intelligence relates to
different EF components in the unity and diversity model. Friedman
et al.43 found that common EF and updating-specific factors showed
almost the same degree of correlations with intelligence test perfor-
mance (r =0.51 vs r = 0.49), whereas the shifting-specific factor showed
a significant negative correlation with intelligence test performance
(r = −0.24). We measured the participants’ general intelligence with
Raven’s ProgressiveMatrices Test (n = 924,male = 382, age 17–31 years,
mean= 20.68 years). Results showed that in the “C+U+ S” model,
intelligence test performance was significantly and positively asso-
ciated with the common EF component (r =0.32, P < 1 × 10−5, uncor-
rected) and the updating-specific component (r =0.14, P = 2.88 × 10−5,
uncorrected), but negatively associated with the shifting-specific
component (r = −0.07, P = 0.03, uncorrected). These results indi-
cated that EFs and intelligence test performance are related only to a
moderate extent4.

Using the neural data to constrain the models based on the
behavioral data
Previous studies have examined the neural substrates of different EF
components based on brain imaging data, focusing on either the
“I + U + S” model22,44 or the “C+U+ S” model28,30,31. In this study, we
used the brain image data to assess different EF models and select the
best fitting one(s). The idea is that each component in a goodmodel is
expected to have dissociable and interpretable neural substrates. We
chose to use resting-state functional connectivity (RSFC) patterns
based on two lines of evidence. First, many cognitive functions are
supported by the functional integration of distributed brain regions,
which should be reflected by RSFC patterns. Consistently, previous
studies have shown that RSFCpatterns can successfully predict various
cognitive performances45–48. Second, our previous study has demon-
strated that RSFC patterns are significantly heritable and genetically
correlated with psychiatric diseases49. These findings indicate that
RSFC patterns can serve as optimal intermediate phenotypes50.

Connectome-based predictive model. To estimate functional con-
nectivity from resting-state fMRI data, we first parcellated the brain
into 264 regions (i.e., nodes) according to the Power 264 parcellation
atlas51. The mean BOLD time series from these nodes were used to
estimate the degree of connectivity between any two nodes (i.e., edge)
by calculating the Pearson correlations of their BOLD time series,
resulting in 34,716 edges for each participant. We then used these
edges to predict individuals’ EF factor scores by applying a
connectome-based predictive model (CPM)52. Briefly, the CPM adopts
a cross-validation approach to develop predictive models of brain-
behavior relationships from connectivity data. In this case, we used a
linear regression with tenfold cross-validation to predict individuals’
EF factor scores.

We found thatwhenusing the cutoff threshold ofP =0.05 to select
edges, the RSFC pattern could successfully predict most EF factor
scores after multiple comparisons correction using the false discovery
rate (FDR) method53 (FDR-BH corrected, P <0.05) (Fig. 3), except the
shifting component in the “I +U + S” (r =0.07, Ppermutation = 0.09, FDR-
BH corrected, across 13 tests, hereafter) and the “U/I + S” model
(r =0.06, Ppermutation = 0.08), the inhibiting-specific component in the
“C+ I + S”model (r =0.06, Ppermutation = 0.09), and the updating-specific
component in the “C+U+ S”model (r =0.04, Ppermutation = 0.19). These
results suggested that the inhibiting and updating components might
be mainly accounted for by the common EF component. Furthermore,
we found that the RSFC could successfully predict the shifting-specific
component in the bifactor models, but failed to predict the shifting
component in the correlated models. This indicates that the shifting-
specific component and the common component were functionally
dissociated, as the only difference between the two components was
whether the common componentwas removed from the shifting tasks.
To verify the robustness of our results, we also used the cutoff of
P =0.01 and P =0.1 to select edges and obtained remarkably similar
results (Supplementary Table 4).

Dice similarity analysis to examine the neural dissociation. To
determine whether the EF components that could be successfully
predicted by the RSFC were associated with distinctive neural sub-
strates, we examined the overlap and separation of the EF compo-
nents’ edges. This analysis was done on four models in which at least
two components were significantly associated with brain edges.

First, we identified the edges that contributed the most to the
predictionof the EF components in theCPManalysis. Edges thatwere
selected 950 times in the 1000 iterations (100 times of ten-folds)
were considered as “contributing edges”54. Second, we used the Dice
coefficient to quantify the degree of overlap of the contributing
edges for each pair of EF components in a model and tested their
significance using a permutation test (see “Methods”). We found a

Table 1 | Model fit statistics of the 12 EF latent variablemodels

Model χ2 df CFI RMSEA SRMR AIC BIC

Correlated-factors models

1. I+U+S 41.17 24 0.99 0.02 0.02 48,991 49,161

2. S/I+U 339.83 26 0.73 0.08 0.06 49,286 49,444

3. U/I+S 74.41 26 0.96 0.03 0.02 49,021 49,179

4. S/U+I 402.08 26 0.68 0.08 0.06 49,349 49,507

5. G 431.91 27 0.65 0.08 0.06 49,376 49,529

Bifactor models

6. C+I+U+S 28.45 18 0.99 0.02 0.02 48,991 49,195

7. C+I+S 43.83 21 0.98 0.02 0.02 49,000 49,187

8. C+I+U 219.96 21 0.83 0.07 0.06 49,176 49,363

9. C+U+S 30.01 21 0.99 0.01 0.02 48,987 49,173

10. C+I 401.81 24 0.67 0.09 0.06 49,352 49,522

11. C+S 73.29 24 0.96 0.03 0.02 49,024 49,193

12. C+U 331.92 24 0.73 0.08 0.06 49,282 49,452

χ2 chi-squared statistics, df degrees of freedom, CFI comparative fit index, RMSEA the root-
mean-square error of approximation, SRMR standardized root-mean square residual, AIC Akaike
information criterion, BIC Bayesian information criterion.
CFI > 0.95 is commonly used as an indication of the adequate fit. Lower values of SRMR and
RMSEA indicate better fit, with < 0.05 indicating a good fit. Lower values of AIC and BIC indicate
better fit. The good-fit models are indicated in bold, of which the C+U+Smodel showed the best
overall fit.

Article https://doi.org/10.1038/s41467-022-32383-0

Nature Communications |         (2022) 13:4588 4



Fig. 2 | EF latent variablemodels (the five good-fit models). The numbers on the
one-way arrows are standardized factor loadings between latent variables and
manifest variables from the nine tasks. All the loadings had P values <0.05;
uncorrected; two-sided test (hereafter). The numbers on the one-way arrows at the
bottom of the manifest variables are error terms. Significantly correlated pairs of

latent variables are connected with double-arrowed curves and associated corre-
lation coefficients are shown. Exact P values are provided in Source Data file. See
Table 1 for fit statistics for the five models. Source data are provided as a Source
Data file.
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significant overlap of the contributing edges between the inhibiting
and updating components in the “I + U + S” model (Dice coeffi-
cient = 0.58, Ppermutation < 1 × 10−4, uncorrected) (Fig. 4a). In contrast,
the overlap of the contributing edges between the common and
shifting-specific components in the “C + I + S” (Fig. 4b), “C +U + S”
(Fig. 4c) and the “C + S” bifactor model (Fig. 4d) (Dice coefficients
ranged from 0.007 to 0.014, Ppermutation > 0.52, uncorrected) were
non-significant, suggesting dissociated neural substrates for the
common and shifting-specific components.

Taken together, the above results suggested that the “C+ S”
model was best supported by the CPM results, because its shifting
component was predicted with greater accuracy than was the shifting
component in the “U/I + S” model, and their two components were
associated with distinct edges.

Combining CPM and Neurosynth to identify brain regions for
each component in the selected model
To further validate our CPM results (based on individual differences)
and to identify the brain regions associated with each component in
the selectedmodel, we conducted a conjunction analysis of our results
with those from the Neurosynth meta-analysis24 (based on group-
averaged activations). Because CPM and Neurosynth meta-analysis
capture different types of neural correlates of EF (i.e., correlates based
on individual differences and those based on group-level analysis,
respectively), the conjunction analysis provided a more robust and
convergent examination of brain regions important for EF and its
components.

First, we identified the specific brain regions associated with EF
components in the CPM analysis. We ranked nodes based on the
number of contributing edges (N) they had, and extracted the top
nodes for EF components in the “C+ S” model (Supplementary
Table 5). For the common EF component, the top nodes were the
precentral gyrus, the inferior temporal gyrus, the frontal pole, the
lateral occipital cortex (LOC), the middle frontal gyrus (MFG), and the
middle temporal gyrus. For the shifting-specific component, the top
nodes included the LOC, the paracingulate gyrus, the planum tem-
porale, the paracingulate gyrus, the supplementary motor cortex, the
frontal orbital cortex, the postcentral gyrus, the precentral gyrus, and
the central opercular cortex.

Second, we generated the Neurosynth meta-analytic maps for
inhibiting (Fig. 5a), updating (Fig. 5b), and shifting (Fig. 5c) using term-
based search (see “Methods”, uniformity test, z > 3.3). A conjunction
analysis of all three meta-analytic maps revealed common brain
regions in the paracingulate gyrus, the superior parietal lobule
extending to the superior lateral occipital cortex, the insular cortex
extending to the frontal orbital cortex, and the superior parietal
lobule. This conjunction map is defined as the meta-analytic results of
the common EF component (Fig. 5d). We also obtained the shifting-
specific meta-analytic map by subtracting the common activation
regions of the three meta-analytic maps from the shifting meta-
analytic map, which mainly contained the LOC, MFG, right para-
cingulate gyrus, and insular cortex (Fig. 5f).

Third, wedid the conjunction analyses to reveal overlapping brain
regions between the meta-analytic results and the CPM results. We
found that for the common EF component, the strongly overlapping
regionwas the rightMFG,whereas for the shifting-specific component,
the strongly overlapping regions were the right paracingulate and LOC
(Fig. 5g and Supplementary Table 6).

Fig. 4 | The overlap of the contributing edges among EF components. The bar
graphs show the distribution of the Dice coefficients with 10,000 permutations.
The red dot indicates the Dice coefficients obtained using the real data. a The
overlap of the inhibiting and updating components in the “I+U+S” model. b The

overlap of the common and shifting-specific components in the “C+I+S” model.
c The overlap of the common and shifting-specific components in the “C+U+S”
model.dThe overlapof the common and shifting-specific components in the “C+S”
model. Source data are provided as a Source Data file.

Fig. 3 | Individual connectivity patterns predict EF factor scores across the five
good-fit models. The presented prediction accuracies (r) were obtained using
tenfold cross-validation analyses and averaged from 100 random splits of the data
(n = 870 subjects), each point (in total 100) overlaying the bar gragh represents the
predictive accuracy of each tenfold cross-validation, P values were estimated using
10,000 permutations. The significant results after FDR-BH correction are noted
with asterisks (***P values < 0.001, *P values < 0.05, exact P values are provided in
Source Data file, one-sided permutation test). I inhibiting or inhibiting-specific, U
updating or updating-specific, S shifting or shifting-specific, U/I (updating =
inhibiting), C common. Source data are provided as a Source Data file.

Table 2 | Nested model comparisons of the five good-
fit models

Model CFIdiff RMSEAdiff χ2diff dfdiff P

(“I+U+S”) vs (“U/I+S”) 0.03 0.01 33.24 2 6.07e-8

(“C+U+S”) vs (“C+S”) 0.03 0.02 43.29 3 2.14e-9

(“C+I+S”) vs (“C+S”) 0.02 0.01 29.46 3 1.79e-6

One-sided test.
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Although our CPM analysis did not reveal a significant prediction
of the updating-specific component in the “C+U+ S”model, previous
studies have implicated the basal ganglia (BG) for the updating-specific
component4,55. Consistently, the BG are one of the top clusters of
meta-analytic results of the updating-specific component (Fig. 5e,
MNI(COG) = 13, −3, 4). Nevertheless, the edges connecting the BG could
not predict the updating-specific component (r = −0.015, Ppermuation =
0.60, uncorrected).

The network enrichment patterns for each EF component. Focusing
on the three nodes based on the conjunction analysis mentioned
above (i.e., MFG, paracingulate gyrus, LOC), we further investigated
the distribution of the contributing edges that were linked to these
nodes. In other words, we aimed to identify the networks in which
these edges were mainly enriched56 (see “Methods”). As shown in

Fig. 6, for the common EF component, the contributing edges that
were linked to the MFG (i.e., the specific brain region for the common
EF component)weremainly distributed in the FPN-SANnetwork (2.92×
enrichment). For the shifting-specific component, the contributing
edges that were linked to the paracingulate gyrus were mainly dis-
tributed in the CON-Subcor network (4.05× enrichment). The con-
tributing edges that were linked to the LOC were mainly distributed in
the FPN-DAN network (2.39× enrichment).

Using the genetic data to constrain the models based on beha-
vioral data
Using genetic correlation analysis to examine genetic dissociation
among EF components. The above analyses used neural data to
constrain the five good-fit models based on behavioral data, which
revealed one model (i.e., the “C+ S” model) that showed robust fit to

Fig. 6 | Network enrichmentpatterns of contributing edges linked tokeynodes
for EF components of the “C + S” model. Somato motor and somatosensory
network, CON cingulo-opercular network, DMN default mode network, FPN
frontoparietal network, SAN salience network, Subcor subcortical network, VAN

ventral attention network, DAN dorsal attention network, MFG middle frontal
gyrus, paracingulate paracingulate gyrus, LOC lateral occipital cortex. Here, we
only show the network connection patterns with enrichment folds ≥1. Source data
are provided as a Source Data file.

Fig. 5 | Combining CPM and the Neurosynth results. The Neurosynth meta-
analytic results for (a) inhibiting, (b) updating, (c) shifting tasks, and (d) their
conjunctions, based on the common activation map for all three tasks. e The
updating-specific meta-analytic map was obtained by subtracting the com-
mon map from the updating-task map. f The shifting-specific meta-analytic
map was obtained by subtracting the common map from the shifting-task
map. g Overlap with the CPM result. The specific brain regions for the
common EF component were obtained by overlapping the top ten nodes for

the common EF component in the CPM analysis with the conjunction map
(d), whereas those for the shifting-specific component were obtained by
overlapping the top ten nodes for the shifting-specific component in the
CPM analysis with the shifting-specific meta-analytic map (f). The brain figure
was visualized by the BrainNet Viewer123 under the Creative Commons
Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
MFG middle frontal gyrus, LOC lateral occipital cortex. Here, we only show
the clusters with over 100 voxels.
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the neural data. This model showed significant and dissociated neural
substrates for the common and shifting-specific EF components. Here
we again startedwith thefive good-fitmodelsbasedonbehavioral data
and examined whether the EF components of the five good-fit models
showed genetic dissociations. We expected to find such dissociations
because previous studies have shown that EFs are highly heritable4,20

and are associated with separate sets of genes21.
First, we estimated the genome-wide SNP heritability of the EF

components in the fivemodels.We found that for the “I + U + S”model,
heritability was significant for the inhibiting component (h2

SNP = 0.60,
SE = 0.23, P = 1.03 × 10−2, FDR-BH corrected across 13 tests, hereafter)
and the updating component (h2

SNP = 0.58, SE = 0.23, P = 1.03 × 10−3),
but not the shifting component (h2

SNP = 0.19, SE = 0.23, P = 0.22). For
the “U/I + S” model, heritability was significant for the “updating =
inhibiting” component (h2

SNP = 0.62, SE = 0.23, P = 1.03 × 10−3), but not
the shifting component (h2

SNP = 0.19, SE = 0.23, P = 0.22). For the three
bifactor models, i.e., C + I + S, C +U + S and C+ S, heritability was
moderate for the common EF component in the three models
(h2

SNP = 0.58–0.63, SE = 0.23, P = 1.03 × 10−3), but not significant for the
shifting-specific component in the three models (h2

SNP = 0.19, SE =
0.23, P = 0.22). Furthermore, heritability was not significant for the
inhibiting-specific EF component in the “C+ I + S”model (h2

SNP = 0.29,
SE = 0.23, P = 0.20) and the updating-specific EF component in the
“C+U+ S” model (h2

SNP = 0.14, SE = 0.22, P =0.25).
We also estimated the heritability of IQ (Raven’s Progressive

Matrices Test), which revealed a heritability of h2
SNP = 0.50 (SE =0.38,

P =0.10), in line with a previous GCTA analysis of 2875 children at age
12 (h2

SNP = 0.45)57 and ameta-analysis based on 50 years of twin studies
(h2 =0.54)58. This value is higher than that found in a prior consortium
study based on unrelated individuals59 i.e., h2

SNP = 0.19–0.22 across age
groups; h2

SNP = 0.22, SE = 0.10 for young adults (n = 6033). The higher
heritability estimatesmay be due to the homogeneity of our sample of
healthy young college students of Han ethnicity. Using the same
sample, we also found higher heritability estimates of functional con-
nectivity edges in a previous study49 as compared to those from theUK
Biobank data60. In addition, the limited sample size may have also led
to less accurate (possibly inflated) heritability estimates.

Second, we estimated the genetic correlations between the EF
components within the same models using the Bivariate GREML
functions (https://yanglab.westlake.edu.cn/software/gcta/#Bivariate
GREMLanalysis) in the GCTA toolbox61,62. Here, the genetic correla-
tion between a pair of traits is their shared additive genetic effect, with
a high genetic correlation suggesting a shared or overlapping genetic
mechanism. Recall that the common and specific components in the
bifactor models are orthogonal. Indeed, our results showed that the
genetic correlation between the common and shifting-specific com-
ponents was close to zero (r = −0.06, SE = 0.49, P =0.49, FDR-BH cor-
rected, across 11 tests, hereafter), which was much lower than the
genetic correlations of the pairs of components in the “I + U + S”model
(updating and inhibiting: r = 0.96, SE = 0.05, P =0.04; inhibiting and
shifting: r =0.40, SE =0.41, P = 0.40; updating and shifting: r =0.43,
SE = 0.43, P = 0.40), the “U/I + S” model (r =0.43, SE = 0.40, P =0.40),
the “C+ I + S” model (common and inhibiting-specific: r =0.70, SE =
0.37, P = 0.25; common and shifting-specific: r = −0.04, SE = 0.51,
P =0.49; inhibiting-specific and shifting-specific: r = −0.23, SE = 0.73,
P =0.49), and the “C+U+ S” model (common and updating-specific:
r =0.61, SE = 0.59, P =0.40; common and shifting-specific: r = −0.09,
SE = 0.50, P =0.49; updating-specific and shifting-specific: r = −0.03,
SE = 0.95, P =0.49). These results suggested genetic dissociations
between the common EF and shifting-specific components.

The genetic architecture of common and shifting-specific compo-
nents based on Allen Human Brain Atlas (AHBA). To further inte-
grate genes, brain, and cognition, we used AHBA to extract three gene
sets with enhanced expression in the three brain regions associated

with the common EF component (i.e.,MFG-related genes) and shifting-
specific component (i.e., paracingulate gyrus, which corresponds to
subcallosal cingulate gyrus in the AHBA, SCG-related genes; and LOC-
related genes, which corresponds to occipital gyrus, superior division
in AHBA). For the updating-specific component, we extracted genes
with enhanced expression in the BG region (see “Methods” and Sup-
plementaryData 1 fordetailed information of the candidate genes).We
then estimated the enrichment pattern of the candidate gene sets for
the three EF components using MAGENTA (Meta-Analysis Gene-set
Enrichment of variaNT Associations) functions63. We used a nonpara-
metric permutation test to examine whether there weremore genes in
the candidate gene set that passed the predetermined gene score rank
cutoff than would be expected by chance, i.e., compared to randomly
selected gene sets of identical size 10,000 times. Two enrichment
cutoffs, 95 percentile and 75 percentile of all gene scores, are generally
used in the literature. Given that the EFs are highly polygenic4, we
reported the 75 percentile results.

In general, our results showed that the common EF component
had a different genetic basis than the shifting-specific component
across different genetic boundaries (Table 3 and Supplementary
Table 7). In particular, when the gene boundaries were defined as
± 35 kb, the MFG-related genes showed significant enrichment for the
common EF component (P75percentile = 1.80 × 10−2, FDR-BH corrected,
across 12 tests, hereafter), but not for the shifting-specific component
(P75percentile = 0.08). By contrast, the SCG-related genes were sig-
nificantly enriched for the shifting-specific component (P75percentile =
1.80 × 10−2), but not for the common EF component (P75percentile =
0.18). No significant results were found for the LOC-related and BG-
related genes (Table 3). These two gene sets were not included in
further analyses.

Functional enrichment of the MFG- and SCG-related genes. To
further characterize the MFG- and SCG-related genes, we performed
functional gene-set enrichment analysis using ToppGene suite64

(https://toppgene.cchmc.org/). This method detects functional
enrichment of a given list of genes based on gene annotations, such as
Gene Ontology (GO) terms (e.g., GOmolecular function, GObiological
process and GO cellular component), mouse phenotypes, gene path-
way, and genes associated with mental disorders. As expected, the

Table 3 | Enrichment patterns of the Allen brain expression
candidate gene sets

Components Gene sets P(95%) P(75%) EXP#genes OBS#genes P(FDR-BH)

Common MFG 0.11 3.0e-3 241 275 1.80e-2

SCG 0.29 0.09 239 254 0.18

LOC 0.23 0.26 242 249 0.31

BG 0.49 0.08 240 256 0.18

Updating-
specific

MFG 0.40 0.29 241 247 0.32

SCG 0.55 0.19 239 249 0.27

LOC 0.46 0.19 241 251 0.27

BG 0.63 0.53 240 238 0.53

Shifting-
specific

MFG 0.27 0.02 143 164 0.08

SCG 0.22 2.3e-3 139 166 1.8e-2

LOC 0.50 0.06 149 165 0.18

BG 0.96 0.20 139 147 0.27

MFG = the set of genes that showed enhanced expression in themiddle frontal gyrus; SCG = the
set of genes that showed enhanced expression in the paracingulate (subcallosal cingulate)
gyrus; LOC= the set of genes that showed enhanced expression in the occipital gyrus, superior
division; BG= the set of genes that showed enhanced expression in the basal ganglia. P(95%):
nominal gene-set enrichment P value for a candidategene set (95% cutoff); P(75%): nominal gene-
set enrichment P value for a candidate gene set (75% cutoff); EXP#genes (75%): expected
number of genes that were above 75% cutoff; OBS#genes (75%): observednumber of genes that
were above 75% cutoff. Correction for multiple comparisons was performed with the FDR-BH.
One-sided test.
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MFG-related and SCG-related genes showed both common and dis-
tinct enrichment patterns. In terms of GO biological process, GO cel-
lular component, and gene pathway, both candidate gene sets showed
enrichment for synaptic signaling (GO biological process, MFG-related
genes: P = 2.70 × 10−53, FDR-BH corrected, hereafter; SCG-related
genes: P = 3.85 × 10−28), synapse (GO cellular component, MFG-related
genes: P = 8.54 × 10−52; SCG-related genes: P = 7.85 × 10−35), and neu-
roactive ligand-receptor interaction (gene pathway, MFG-related
genes: P = 6.49 × 10−14; SCG-related genes: P = 1.44 × 10−5). In terms of
GO molecular functions, MFG-related genes were enriched for gated
channel activity (P = 3.33 × 10−21), whereas the SCG-related genes
showed overrepresentation in signaling receptor binding
(P = 1.97 × 10−9). In terms of mental disorders, MFG-related genes were
enriched in schizophrenia (P = 1.18 × 10−26), whereas the SCG-related
genes showed overrepresentation in anxiety (P = 7.79 × 10−13) (see
Supplementary Results and Supplementary Data 1 for more results).

The genetic architecture of common and shifting-specific compo-
nents based on psychiatric or cognitive-associated gene sets. The
above analysis extracted candidate gene sets (i.e., MFG-, SCG-, LOC-,
and BG-related genes) using the “gene-brain-behavior” pathway
approach, which revealed dissociated gene sets for the common and
shifting-specific components. To verify the genetic dissociations, we
also extracted five candidate gene sets that have been associated with
psychiatric or cognitive functions, such as schizophrenia-associated
SNPs65, ADHD-associated SNPs66, intelligence-associated SNPs59, edu-
cational attainment-associated SNPs67, genes preferentially expressed
in the central nervous system68,69, and a negative control gene set, i.e.,
Crohn’s disease-associated SNPs70 (see “Methods”). Generally, our
results revealed that no gene sets showed a higher contribution to the
heritability of the common EF and shifting-specific components,
except the intelligence-related genes and the educational attainment-
associated genes. In particular, the intelligence-related genes were
enriched for the common EF component when the top 30% SNPs were
used (2.85× enrichment, P =0.02, FDR-BH corrected, across 12 tests,
hereafter)(Supplementary Fig. 3), and the educational attainment-
associated SNPs showed enriched contribution to the heritability of
the shifting-specific component when the top-10% SNPs were used
(4.40× enrichment, P = 4.01 × 10−3) (Supplementary Fig. 3).

The gene-brain-behavior pathway for common and shifting-
specific components
The above results revealed dissociated EF components in the “C+ S”
model at the behavioral, neural, and genetic levels. In a final analysis,

we examined whether these results converged to form a dissociated
gene-brain-behavior pathway. We applied a high-dimensional media-
tion model37 to investigate the relationship between the candidate
gene sets based on Allen Brain expression, the contributing edges of
each EF component (i.e., edges that were selected 950 times across
1000 iterations in the CPM), and the EF factor scores (see “Methods”).
In this model, the high-dimensional independent measure (also called
exposure in such models) was genetic variation, the high-dimensional
mediator was brain functional connectivity, and the univariate
dependent (or outcome) measure was the factor score of each EF
component. In our analysis, we aimed to estimate the proportion of
the total effect (TE) that was mediated (i.e., proportion variance
mediated, PVM). A nonparametric permutation test was used to eval-
uate the statistical significance of the PVM, and FDR-BH was used to
correct for multiple comparisons53.

For the common EF component, our results showed that
the mediation proportion was consistently significant (PVM=0.19,
Ppermutation = 9.4 × 10−3, FDR-BH corrected, across six tests, hereafter)
across different gene boundaries (Fig. 7 and Supplementary Table 8),
suggesting that the MFG-related genes significantly affected the
common EF component by regulating the functional connectivity
pattern. We also investigated whether the functional connectivity
edges used to predict the shifting-specific component mediated the
effect of SCG-related genes on shifting-specific scores. The results
indicated that the mediation proportion was not significant (PVM=
−0.18, Ppermutation = 0.996) (Fig. 7 and Supplementary Table 8), which
was likely due to the lack of significant genetic association of shifting-
specific score.

Discussion
We investigated the structure of the EFs in a large, homogeneous, and
unrelated population by integrating multimodal data from genes,
brain imaging, and behavior. This approach overcomes several major
limitations in existing efforts to uncover the structure of mental con-
structs, and provides a robust and powerful framework for ontological
discovery. As an illustration of the usefulness of this approach, we
found that the “C+ S”model of EFs not onlywas parsimonious but also
fit the behavioral, neural, and genetic data. These results have furth-
ered our understanding of the structure of EFs and their neurogenetic
basis, which will shed light on their theoretical development and have
potential clinical implications.

We obtained convergent evidence from the behavioral, neural,
and genetic data to support the “C+ S” bifactor model and its “unity
and diversity” structure of EF. First, by exploring the 12 candidate

Fig. 7 | High multidimensional mediation results. a Mediation results of the
common EF factor. b Mediation results of the shifting-specific factor. A significant
mediationeffectwas found for the commonEFcomponent, but not for the shifting-
specific component. The brainfigurewas visualized by the BrainNetViewer123 under
the Creative Commons Attribution (CC BY) license (https://creativecommons.org/

licenses/by/4.0/). VIE variance indirect effect, VDE variance direct effect, PVM
proportion of the variance mediated. The solid arrows indicate significant coeffi-
cients and dashed arrows indicate non-significant coefficients. Correction for
multiple comparisons was performed with the FDR-BH. One-sided
permutation test.
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models with the behavioral data, we found that the “C+ S” bifactor
model to have good fit. This model not only is parsimonious (as
compared to the “I + U + S”, “C+ I + S”, “C+U+ S”models) but alsouses
two orthogonal components (as compared to the “U/I + S”model). Our
results corroborate existing findings that the shifting component can
be divided into common and specific components. For example, it has
been reported that toddlers’ self-restraint ability was not correlated
with their shifting score in the “I + U + S” model at age 17, but was
positively correlated with the common EF component and negatively
correlated with the shifting-specific component score in the bifactor
model43. We also found contrasting patterns in their correlations with
intelligence test performance43, which might reflect a stability-
flexibility tradeoff21,71,72.

Second, we found that at the neural level, the two EF components
of the “C+ S” model showed dissociated neural substrates as their
contributing edges were not significantly overlapping. This is corro-
borated by previous reports on the dissociated neural basis of the
common EF and shifting-specific components using structural MRI28

and resting-state fMRI data30,31. In contrast, we did notfind a significant
prediction of the shifting component in the “I + U + S” or “U/I + S”
model, further suggesting that the shifting component contains two
distinct components (i.e., common and shifting-specific components).
Furthermore, by combining themeta-analysis results fromNeurosynth
and the individual difference results using CPM, we found that the
right MFG and the paracingulate cortex were specifically involved in
the common EF and shifting-specific components, respectively. The
commonEFcomponent reflects individuals’ ability to activelymaintain
the task goal and goal-related information21,71,73. Correspondingly, the
MFG is a core part of the multiple demand system41,74,75; is involved in
reorienting of attention76; and shows activation across the shifting,
inhibiting, and updating tasks22. In contrast, the paracingulate gyrus
has been consistently associated with the shifting tasks77–80. Interest-
ingly, theMFGwas also consistently involved in shifting tasks22,79, but it
might be responsible for the common EF component rather than the
shifting-specific component.

A fewprevious studies have used resting-state data and calculated
simple correlations between resting-state data and behavioral perfor-
mance to examine the neural correlates of common and specific
aspects of EFs. For example, Reineberg et al.30 extracted common,
updating-specific, and shifting-specific components from three tasks
(n = 91), and found that the common EF was associated with the con-
nectivity between the frontal pole and the attentional network, and
that between the cerebellum and the right frontoparietal network. In
contrast, the shifting-specific ability was associated with the con-
nectivity between the angular gyrus and the ventral attention network.
In a follow-up studyusing a large sample (n = 250) and six EF tasks, they
found that the shifting-specific component was correlated with the
connectivity between the ventral attention network, particularly the
cingulo-opercular subsystem, and the default mode network31. Using a
larger sample and a cross-validation approach, we found that the
contributing edges linked to the MFG for the common component
weremainly located in the FPN-SANnetwork,whereas the contributing
edges linked to the paracingulate gyrus for the shifting-specific com-
ponent weremainly located in the CON-Subcor network. These results
together suggest that the frontoparietal networkmay play a key role in
common EF, whereas the cingulo-opercular subsystem may support
shifting-specific EF.

Third, at the genetic level, we found that the genetic correlation
between the common EF and shifting-specific components was close
to zero (r = −0.06), much lower than other component pairs, such as
common and updating-specific components (r = 0.61), and common
and inhibiting-specific components (r = 0.70). It is worth noting this
genetic dissociation could not be simply attributed to low heritability
for the shifting-specific component, as the updating-specific and
inhibiting-specific components also showed low and non-significant

heritability. Yet, they showed a high genetic correlation with the
common component. Furthermore, our brain expression-based gene-
sets enrichment analysis showed double dissociation for the genetic
basis of the two components. In particular, the MFG-related genes
exhibited enrichment specifically for the common EF component,
whereas the SCG-related genes showed enrichment only for the
shifting-specific component.

In light of the strong correlations between the three components
in the “I + U + S” model, the “C+U+ S” bifactor model was developed
and has been widely used in recent literature. Although the current
study and previous studies found that the “C+U+ S” showed the best
fit to the behavioral data, our study showed that these models with a
separate updating component were not fully compatible with all the
cognitive, neural, and genetic data. First, consistent with previous
studies, our study showed that the three components in the “I + U + S”
modelwere highly correlatedwithone another at the cognitive, neural,
and genetic levels and that inhibiting and updating were more highly
correlated with each other than with the shifting component. Second,
the loadings of the updating tasks on the updating-specific component
are generally weaker than other loadings (i.e., those of the shifting
tasks on the shifting-specific component). Third, the cognitive pro-
cesses tapped by the updating-specific component are not yet clear.
Both our study and the previous studies20,43 found that the updating-
specific component was moderately correlated with intelligence test
performance beyond the common component, but it did not predict
self-restraint ability43, or procrastination73, beyond the common EF. It
has been proposed that the updating-specific component might be
involved in effective gating of information and controlled retrieval
from long-term memory21. More studies are required to examine the
cognitive processes of the updating-specific component. Finally, con-
sistent with previous studies30,31, we found that functional connectivity
patterns in the brain could not successfully predict the updating-
specific factor score. Although previous studies have implicated the
BG for the updating-specific component4,55, the edges connecting the
BGcouldnotpredict theupdating-specific component. In addition, the
genes with enhanced expression in the BG did not show any enrich-
ment for the updating-specific component.

It is also notable that previous studies have revealedmixed results
for the anatomical basis of the updating-specific component. For
example, one study found that the updating-specific component was
related to the dorsolateral prefrontal gray matter volume28. However,
that study had a small sample size (n = 61) and used only one task for
each EF component, so its results might reflect task-specific processes
rather than the latent updating-specific component. A follow-up
study81 with a larger sample size (n = 251) and six EF tasks found that
better updating-specific ability was associatedwith the greater cortical
thickness of a cluster in the left cuneus/precuneus, and reduced cor-
tical thickness in the right superior frontal gyrus and right middle/
superior temporal gyrus.

Several factors could have contributed to the lack of significant
neural and genetic associationswith the updating-specific component.
They include the relatively weak loading of updating tasks on the
updating-specific component, the indeterminacy of factor scores, the
reliability issue of the resting-state functional connectivity measures82,
and the missing heritability effect of the GCTA approach83. Future
studies with significantly larger sample sizes and multimodality
(structural and functional) data are needed to detect the neural and
genetic associations of the updating-specific component.

Previous studies have attempted to reveal the neurobiological
mechanisms of human complex behaviors through the “gene-brain-
behavior” pathway34–36. For example, several studies have explored
how the genetic effects on cognition are mediated by certain neural
intermediate phenotypes84–86. Since these studies have focused on
either one single gene or SNP, a single task, or a single brain region, the
observed effects have been generally very small. Such studies are
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incompatible with the fact that the EF latent components are highly
heritable and highly polygenic4. In contrast, the current study adopted
a high-dimensional mediation model37 to examine the relationship
among gene sets, brain function networks, and latent variable com-
ponents of EFs.

Wefirst usedmultidimensional functional connectivity patterns in
the brain to predict EF factor scores. Compared with commonly used
univariate traits, the multidimensional traits could provide more
comprehensive information87. Our previous study has demonstrated
that the multidimensional functional connectivity patterns are sig-
nificantly heritable49. Many studies have also established the relation-
ship between multidimensional functional connectivity patterns,
cognitive functions, and brain disorders45,46,48,88. Taken together, these
results confirm thatmultidimensional functional connectivity patterns
can act as important intermediate phenotypes to link genes and
behavior, thus playing a critical role in revealing the neurobiological
mechanisms of human complex traits.

We then used a candidate gene-sets approach to estimate the
genetic contribution to the heritability of EF components. Compared
to the candidate gene approach or genome-wide association analysis
(GWAS), the gene-sets approach can estimate the additive effects of
multiple genes while mitigating the power issue in GWAS. In the cur-
rent study, we defined gene sets based on the enhanced expression in
EF component-specific brain areas, including MFG and paracingulate
gyrus, according to the AllenHumanBrain Atlas. The hypothesis is that
such genes are likely to affect individuals’ EF performance by affecting
the brain’s functional connectivity pattern. We also extracted candi-
date genes from the largest GWAS results, e.g., genes related to psy-
chiatric disorders and cognitive abilities. Note that when we examined
only the association between genes and the EF components, we found
few significant results, suggesting that it is necessary to use the more
holistic “gene-brain-behavior” pathway approach to identify the can-
didate gene sets. Hence, we finally applied a high-dimensional med-
iation model37 to analyze the “gene-brain-behavior” pathway. Such a
model can handle the complex, high-dimensional genetic and neural
data, and capture the aggregated genetic effects on brain functions
with greater statistical power89,90. Indeed, our model showed sig-
nificant gene-brain-behavior effects.

One result from the heritability analysis is worthy of a separate
comment. We found significant heritability for the common EF com-
ponent, but not for the shifting-specific component. These results are
consistent with previous studies. Compared to the common EF com-
ponent, the shifting-specific component was found to be less heritable
in a previous twin study20. Onepossible explanation is that the shifting-
specific component might be more affected by environmental
factors20. A larger sample size may be needed in order to detect the
relatively small genetic effect on the shifting-specific component.

We believe that our study has important theoretical, clinical, and
methodological implications. Theoretically, as one of the core cogni-
tive functions, EFs affect cognitive processes that are important to
daily life, study, and work. The “gene-brain-behavior” pathway for the
common EF component revealed in the current study highlights the
unity of EFs. Meanwhile, the contrasting relationship of the common
EF component and the shifting-specific component with other cogni-
tive functions emphasize the stability and flexibility framework of EFs4.
This discovery sets the stage to further understand the relationship
between EFs and other cognitive constructs, such as intelligence,
attention, and memory. It could also guide future intervention studies
to enhance EFs and their transfer, either by cognitive training91–93 or
targeted brain stimulation94 or both.

Clinically, the dysfunction of EFs is considered a common
risk factor across various psychiatric disorders95,96, including
schizophrenia13, depression97, and attention-deficit hyperactivity
disorder98. Existing studies mainly used either complex tasks such
as verbal fluency or a few simple EF tasks to estimate the

dysfunction of EFs in patients95, making it hard to accurately
quantify the nature of EF impairments related to specific aspects
of psychopathology. By examining both common and specific EF
components in these disease populations, we can better under-
stand the unity and diversity across diseases and the contribution
of EF dysfunctions, and consequently improve the diagnosis and
treatment of psychological disorders.

Our study also provides a practical methodological framework to
identify the structure of human cognition. Existing studies often try to
characterize the ontology ofmental constructs primarily by behavioral
model-fitting, which lacks neural constraints. The large-scale meta-
analytical approach provides a powerful, scalable, and relatively eco-
nomical choice at the cost of precise delineation of cognitive con-
structs, brain activation, and brain-cognition mapping. In this study,
we collected a relatively large gene-brain-behavior dataset from a
healthy, homogeneous adult sample using the same behavioral para-
digms, imaging and genetic data collection protocols, and analytical
pipeline. Based on this rich dataset, we evaluated several candidate
behavioral models and selected the optimal model based on not only
behavioral data but also their consistency with multi-level evidence
from genes and functional connectivity patterns in the brain.

Several methodological issues should be noted. First, although
the current study recruited a relatively large sample (n = 1454) for the
genetic analysis, which is comparable to similarprevious studies99–101, it
might still be underpowered for some latent EF components such as
the shifting-specific component. Second, the sample in the current
study was unrelated to healthy Han Chinese young people. Although
the characteristics of the sample in this study made it possible for a
systematic study of the gene-brain-behavior relationships due to their
genetic homogeneity, it also means that our results need to be repli-
cated in other populations with different genetic and cultural back-
grounds. In particular, the SNP sets associatedwith cognitive functions
or psychiatric diseases were primarily based on Western participants.
Although cross-population homogeneity has been reported in some
studies65,66,70, it is unknown towhat extent ourfindingswill changewith
SNP sets based on Asian populations, especially Han Chinese.

Third, the heritability estimates fromour analysis are smaller than
those based on twin studies (e.g., 0.62 for the common component in
the current study vs. almost 100% in a previous twin study20). This
“missing heritability” could be due to the fact that genome-wide SNP
heritability in our study only captures additive genetic effects due to
common autosomal SNPs, which ignores gene–gene83, and
gene–environment102 interactive effects and sex chromosomes.
Another factor is that genome-wide SNP heritability is also likely to
suffer from low estimated heritability when causal alleles are rare103. A
third factor is that traditional twin and family design studies may
inflate the heritability estimation because of the violation of a shared
common environment104.

Future studies can be conducted along the following lines. First,
future studies are needed to understand whether our findings are
generalizable to other populations. Second, it would be informative to
examine the structure of EFs in different age groups, because theymay
change with age9,105. Third, the three shifting tasks in the current study
shared a similar task structure and behavioral index. Future studies can
develop richer behavioral paradigms to examine the shifting-specific
component more comprehensively. Moreover, both tasks and ques-
tionnaires can be used to improve the ecological validity of mental
constructs17. Since cognitive measures are very sensitive to the design
of tasks and their procedures, future large consortium studies need to
pay particular attention to standardization of tasks and procedures in
order to examine the genetic basis of cognitive ontology. Finally, it
would be interesting to consider multimodality fusion technologies to
integrate structural MRI, resting-state fMRI, EEG, and MEG data to
improve our understanding of the neural substrates of EF
components106.
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To summarize, this study provides an integrative data-driven
framework to uncover the ontology of complex psychological con-
structs. Our framework, in combination with systematic knowledge-
based approaches, such as the cognitive atlas107,108, could push for a
more detailed and systematic characterization of psychological con-
structs and their neural substrates and genetic basis, and advance
theoretical development and translational applications in cognitive
neuroscience.

Methods
Participants
All participants in the current study were part of the Cognitive Neu-
rogenetic Study of Han Chinese Young Adults (CNSCYA) Project49. A
total of 2110 unrelatedHanChineseparticipants (Supplementary Fig. 1,
male = 845, age 17–31 years, mean= 20.65 years) with high-quality
behavioral data (Supplementary Table 1, see below for task descrip-
tions) were selected. Their behavioral data were used to estimate the
covariance matrix of the nine tasks. Among these participants, 1454
participants (male = 601, age 17–31 years, mean = 20.87 years) who
completed all nine tasks and had high-quality genome data were
selected for further analysis. Of them, 870 (male = 349, age 17–28
years, mean = 20.96 years) also had high-quality resting-state fMRI
data and were used to examine the neural mechanism of the EF latent
variables. Additional subjects were recruited but excluded from fur-
ther analysis due to poor task performance (40–194 subjects for the
nine tasks) (see below), non-HanChinese (9 subjects) or close genomic
relationships (3 subjects) (see below), or poor-quality resting-state
data (a translation greater than 3mm in any direction, or a rotation
greater than 3°, or lacking whole-brain coverage) (91 subjects)49, or
missing gender or age information (4 subjects). All participants were
college students recruited from Beijing or Chongqing, China. They
gavewritten consent to the study andwerepaid for their participation.
This study was approved by the Institutional Review Boards (IRBs) of
Beijing Normal University and Southwest University, China.

Behavioral tasks, dependent measures, and data preprocessing
Participants were tested in a group of 30 to 40 in a computer lab, with
15–20 experimenters, each supervising two participants. The overall
test lasted about 6 h, which was divided into the morning and after-
noon sessions. The nine EF tasks used in this studyweremodified from
Friedman et al.20. Detailed descriptions of the design and dependent
measures are as follows.

Anti-saccade. The taskwas adapted fromRoberts et al.109 In each trial,
a gaze point “+” was first presented in the center of the screen for a
random duration between 1500 and 3500ms, at intervals of 250ms.
Then a visual cue (a 0.32-cmblack square) waspresented for 150ms on
one side of the screen, followed by the target (a 0.79 cmarrowwithin a
1.11-cm square), which appeared on the other side of the screen for
175ms and then shaded by a gray square. The participants had to
control their attention to the target, not the cue, andpressed the left or
top or right key to judge the arrow’s direction. The task included 22
practice trials followed by 90 test trials. The dependent measure was
the percent of error responses.

Stop-signal. In each trial of the task, anarrowappeared in the center of
the screen with a white circle outside for 1000ms (Go trials). Partici-
pants were asked to judge the direction of the arrow and press the left
or right button quickly and accurately. In 25% of the trials (randomly
selected), the white circle appeared and turned red (No-go trials), in
whichcaseparticipants shouldnot respond. Thedelaybetween the red
circle and the arrow was adaptive based on the participant’s task
performance until reaching 50% accuracy of the No-go trials. The task
included four blocks, each with 64 trials. The dependent measure was
stop-signal response time (SSRT). Following a previous study110, we

first calculated the percentile Go response time of correct Go trials,
based on the percentage of No-go trials that participants made
response. The advantage of thismethod is that it does not assume that
the stop rate is exactly 0.5 (an assumption that is often violated in
empirical data). Finally, the SSRT was calculated as the percentile Go
RT of the correct Go trialsminus themean stop-signal delay of the No-
go trials.

Color-word stroop. The Stroop task was adapted from a classic task111.
Specifically, we modified it by using Chinese color words, including
red, green, yellow, and blue. In each trial, after a word in color
appeared in the center of the screen, participants had to make a
judgment about the color of theword but not themeaning of theword
and press one of the four buttons quickly and correctly. In the con-
gruent condition, each word was presented in its corresponding color
(e.g., the word “green” presented in green). In the incongruent con-
dition, the word was presented in one of the other 3 colors (e.g., the
word “green” presented in red). Each word had two conditions, and
eachcondition had 12 trials, resulting in 96 trials thatwerepresented in
a random order. The dependent measure was the response time dif-
ference between the congruent and incongruent conditions.

Number–letter. In each trial (160 trials in total) of the number–letter
switching task112, a number–letter pair appeared on the screen. If they
appeared at the top of the screen, the participants were asked to judge
if the numberwas odd (1,3,5,7,9) or even (2,4,6,8) and press the button
as quickly and correctly as possible. If they appeared at the bottom of
the screen, the participants were asked to judge if the letters are
vowels (A, E, I, U) or consonants (G, K, M, R). The stimuli appeared
pseudo-randomly at the top or the bottom of the screen. Trials were
categorized into the repeat condition (if there was no change in
judgment task from the previous trial) or switch condition (if therewas
task change). The dependent measure was the response time differ-
ence (the switch condition minus the repeat condition). Participants
were asked to respond as quickly and accurately as possible when the
stimuli appeared. The stimulus disappeared after the participants
made a response. The same procedure was used for two other shifting
tasks (i.e., color-shape task and category switch task, see below). For
the category switch task, the stimulus disappeared after the partici-
pants made a response or after 3 s, whichever occurred first.

Color–shape. The color–shape switching task113 is similar to the
number–letter task but with different cues and stimuli. In each trial
(160 trials in total), a cue (e.g., “YS” for color, “XZ” for shape) was
presented for 150ms on the top of screen, followed by the stimulus,
i.e., a red or green circle/ triangle, in the center of the screen with the
cue above it. Participants were instructed to judge the stimuli by color
or shape according to the cue. The same dependent measure was
collected as that in the number–letter task.

Category switch. The task is similar to the color–shape task. In each
trial (96 trials in total) of the category switching task114, a cue (e.g.,
“animacy” for living vs. nonliving judgment, “size” for size judgment)
was presented by for 150ms on the top of screen, followed by a word
(stimulus) in the center of the screenwith the cue above it. Participants
were asked to categorize the word into (a) living or nonliving thing or
(b) larger or smaller than a shoe case, according to the cue. The
dependent measure was the response time difference.

Keep track. In each trial of the keep track task115, 2–4 target categories
of animals, countries, colors, metals, distances, and relatives appeared
at the bottomof the screen, and a list of 15wordswerepresented in the
center of the screen, one byone, each for 1500ms. In total, 12wordlists
were tested, with 4 of which containing words of 2 categories, 4 con-
taining 3 categories, and 4 containing 4 categories. Participants were
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asked to remember the last word of each target category and write
them down. The dependent measure was the total number of words
that were correctly written down.

Letter 3-back. In the letter 3-back task116, a sequence of 13 letters was
presented in the center of the screen serially, each for 750ms and
followed by a blank screen for 2250ms. Participants had to remember
the last three letters anddecide if the current letterwas the same as the
one shown 3 items before, and press the button within 3000ms.
Participants were given a practice session to achieve >70% accuracy or
complete threepractice blocks (15 trials for eachblock). The actual test
included six blocks of 15 trials each (90 trials in total), and the
dependent measure was the d-prime.

Spatial 2-back. The task was very similar to the letter 3-back task, but
the stimuli were squares, and the taskwas to recall the last two squares.
Ten squares were presented on the screen, with each square flashed
for 500ms sequentiallywith an interval of 1500ms. Participants had to
remember the last two squares and decide if the current square was
the same as the one shown two items before. Participants were asked
to practice for one block (24 trials). The testing phase had three blocks
(72 trials in total), and the dependent measure was the d-prime.

Data cleaning. To ensure data quality, trials with extreme RTs and
erroneous responses were excluded before averaging. Briefly, for the
anti-saccade, letter 3-back, and spatial 2-back tasks, which did not use
RT as dependent measures, we removed trials with an RT less than
100ms. For other tasks, including stop-signal, color-word Stroop,
category switch, color–shape switch, and number–letter switch, we
first removed trials with RT less than 100ms. We then removed the
trials whose RT were 1.5× interquartile range (IQR) lower than the first
quartile or 1.5× IQR higher than the third quartile. After that, we
removed participants who did not make response for more than 20%
of trials or made too many mistakes based on the binomial distribu-
tion. Briefly, if a participant completed a task with N trials and the
chance level accuracywas r, the least number of correct trialswould be
the 95% quantile of a binomial distribution B (N, r). Finally, we trun-
cated the extreme scores (i.e., scores that were 1.5x IQR less than the
first quartile or 1.5× IQR more than the third quartile) by replacing
them with median −1.5× IQR and +1.5× IQR, respectively. For all tasks,
we only calculated the response times of correct trials.

Data transformation. The cleaned dependent measures were then
transformed so that a high score represented high ability. For RT
indices used in the three shifting tasks, the stop-signal task, and the
Stroop task, we transformed them into their corresponding negative
values (e.g., -RT), the percent of error responses of the anti-saccade
task and the number of correctly recalled keep track tasks were first
converted to accuracy, then the arcsine transformation and logit
transformation was applied, respectively.

Regressing out the effects of age and gender. We regressed out the
effects of age and sex on the nine task indexes, andused their residuals
to perform CFA. These residuals were transformed to Z-scores before
further EF model estimation.

Model estimation of EF latent components
We used the “lavaan” package in R software to estimate the latent
variable models with maximum likelihood estimation, and used the
missing = “ML” option for CFA function. Following existing studies117,
good-fit models should meet the following criteria, comparative fit
index (CFI) > 0.95, standardized root-mean-square residual (SRMR)
<0.05, and root-mean square error of approximation (RMSEA) < 0.05.
We did not use chi-square (χ2) as it is almost always statistically sig-
nificant for models with more than 400 cases and is also affected by

the degree of the correlations in themodel (the larger the correlations,
the poorer the fit). The index χ2/df is also problematic since there is no
universal agreement on what is a good (or bad) model.

Resting-state fMRI data preprocessing and network
construction
We collected neuroimaging data using 3.0T Siemens MRI Trio scan-
ners in the Brain Imaging Centers at Beijing Normal University and
Southwest University. During the resting-state scan, participants laid
supine on the scanner bed and closed their eyes, and they were asked
not to think about anything special. A gradient echo EPI sequence with
PACEwas used for functional scanning. For theBeijing sample,weused
the following parameters: TR = 2000 ms; TE = 30ms; flip angle = 90°;
FOV = 200× 200mm2; 64 × 64 matrix size with a resolution of
3.1 × 3.1mm2; thirty-three 3.5mm transverse slices. A total of 200 brain
volumes (time points) were acquired. For the Chongqing sample,
FOV = 200× 200mm2; a 3.4 × 3.4mm2 inplane resolution, and thirty-
two 3.0-mm transverse slices were used to acquire a total of 242
volumes. We used GRETNA118 tools and the AFNI119 software to pre-
process the resting-state fMRI data according to standard steps,
including deleting the first 10 EPI volumes, slice-timing correction,
realigning, normalization, adjusting for the nuisance covariates, and
removing linear trends using temporal filters (0.01–0.1 HZ) in a single
regression model120. In particular, we included the global signal, the
average signal of the white matter and the cerebrospinal fluid, and the
24 motion parameters as nuisance covariates121. Then we used the
Power 264 parcellation scheme51 to assess functional connectivity
across the 264 nodes of the whole brain, resulting in 34716 edges. To
control for the differences in scanning parameters, the connectivity
strength of all edges was first normalized within each participant
before conducting the CPM. More detailed information about the
imaging data acquisition, preprocessing, and functional network
construction can be found in our previous study49.

Linking EF latent components with functional connectivity
patterns
We applied a modified CPM protocol52 to explore the neural
mechanism of each EF component. The CPM is a data-driven approach
to developing predictive models of brain-behavior relationships from
connectivity data using cross-validation, which includes four main
steps: (1) feature (i.e., brain edges) selection, (2) feature summariza-
tion, (3) model building and application, and (4) estimation of pre-
diction significance. Using CPM, we can get a generalizable model,
which uses brain connectivity data as input and generates predictions
of behavioral data in novel subjects.

Following Rapuano et al.122, to avoid data contamination between
the behavioral models and the neuroimaging analysis, component
scores were recomputed using the behavioral subset of participants
(n = 1240). The resulting component scores were consistent with those
obtained when the whole sample was used (r >0.9). The loadings from
the behavioral subset of participants were subsequently used to
transform EF performance data in the CPM analysis (n = 870). Fur-
thermore, to avoid biasing the test set, edge strengths were standar-
dized (z-scores) across subjects within each fold of the training set and
the test set, separately.

We used tenfold instead of leave-one-out cross-validation in
consideration of our large sample size (n = 870). The 870 participants
were randomly divided into ten groups. We did 100 random splits of
thedata, and the resultswere averaged. Each time,we left one groupof
participants out as the testing group and used the remaining partici-
pants to build the training model. We calculated partial Pearson cor-
relation between each edge (34,716 in total) and each EF factor score,
controlling for the effect of fMRI scanner, and head motion (mean
framewise displacement, FD). Themost relevant edges (P ≤0.05) were
selected and used to predict the testing participants’ EF factor scores.
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We calculated four unit-weighted summary scores of the connectivity
strength values: all selected positive edges and all selected negative
edges for the training and testing sets separately. To build the pre-
dictive model, we used the summary scores of the positive and nega-
tive edges from the training set to predict the EF factor score in a linear
regression. This predictive model was then used to predict the EF
factor score in the testing set. The Pearson’s correlation coefficient
between the predicted EF factor scores and their true EF factor scores
was used to index the accuracy of the predictive model. The statistical
significance of the predictive accuracy was estimated using 10,000
permutations, in each of which we shuffled EF factor scores and
repeated the above analysis, and computed a correlation coefficient.
The 10,000 correlation coefficients were used to construct the null
distribution. Multiple comparisons correction was performed using
FDR53. To ensure that our results were not critically determined by the
thresholdwe used to select edges, we also repeated the above analyses
using several different thresholds, such as P =0.01, P =0.1.

Dice similarity analysis to examine the independence of neural
substrates
To examine the neural dissociations between different EF components
in the same model, we first identified edges that were selected 950
times across the 1000 iterations in the CPM model (P ≤0.05) and
defined these edges as “contributing edges”. Then, we calculated the
degree of overlap of the contributing edges between any pair of
components of the same model. We used the “Dice similarity coeffi-
cient” to quantify the degree of overlap of the contributing edges,
which is defined as:

DiceðX ,Y Þ= 2∣X \ Y ∣
∣X ∣+ ∣Y ∣

where X, Y are two sets, |X| and |Y| denote the number of elements in
set X and Y, respectively; ∩ represents the intersection operation to
obtain the same elements of two sets. We examined the statistical
significance of a Dice coefficient using 10,000 resampled data sets, in
each of which we randomly selected |X| and |Y| edges for the first and
second components, respectively, and used them to calculate the Dice
similarity coefficient. Note that in each resamapled dataset, each edge
was either selected or unselected for each component. Thus, this
procedure is equivalent to permutating the edge selection status
10,000 times for each component. The resulting 10,000 Dice coeffi-
cients were used to construct the null distribution. Multiple compar-
isons correction was performed using FDR53.

Comparing the neural results with the meta-analytic map
To compare our results with those of the previous studies, we first
selected contributing edges in the CPM model (P ≤0.05). We then
ranked the nodes based on the number of contributing edges (N)
connecting them.

Second, we extracted the fMRI meta-analytic results using
term-based meta-analyses in the Neurosynth24 (https://www.
neurosynth.org/) and the meta-analytic results were visualized
with the BrainNet Viewer (v1.62, http://www.nitrc.org/projects/
bnv/)123. In brief, studies that mentioned a specific term (e.g.,
inhibiting) at least once in their abstracts were included in the
meta-analysis. We downloaded the uniformity test map, which
displays consistently active brain regions (after FDR correction,
P < 0.01) across studies. The z-scores of these regions were cal-
culated using a chi-square (χ2) test, where the null hypothesis is
that activation in all the brain regions was equally likely. Thus,
voxels with large z-scores are reported more often in studies than
the other voxels. In particular, we used term-based search to
extract related meta-analytic maps (uniformity test, z > 3.3). The
“inhibiting” meta-analytic map was obtained by averaging the

maps from search terms “inhibit”, “inhibition”, “inhibitory”,
“inhibitory control”, “response inhibition”, and “stop”. Similarly,
the maps from terms “updating” and “working memory” were
averaged, resulting in “updating” meta-analytic map. No map was
generated using the search term “update”. For the “shifting”
meta-analytic map, it was obtained by averaging the maps of
search term “shifting”, “shifts”, “switching”, and “switch”.

Third, we picked out the top ten nodes of the EF components
based on the CPM analysis and performed a conjunction analysis with
the correspondingmeta-analyticmaps. The resulting brain regions can
be seen as the specific brain regions for certain EF components.

Focusingon these specificbrain regions (nodes),we estimated the
network enrichment patterns of the contributing edges that were
connected to these nodes. The enrichment fold was computed as the
ratio of the actual observed number of selected edges within the
network (Al) and the expected number of selected edges (El). El was
calculated as the number of total edges that can connect to the certain
node within the network multiplied by the ratio of the number of
selected edges connecting to the certain node and number of all edges
that may connect to the node (i.e., 263).

Genetic data preprocessing and imputation
The detailed genotype quality control and imputation process were
presented in our previous study49. The study samples were genotyped
using one of three Illumina chips, including Illumina OmniExpress,
Illumina Zhonghua, and Illumina Omni2.5. We used Plink 1.9124 (https://
www.cog-genomics.org/plink2) to perform standard genome-wide
association quality control filters. In detail, single nucleotide poly-
morphisms (SNPs) were excluded if they had minor allele frequency
(MAF) of <5%, or per-SNP missingness >5%, or a failing of the
Hardy–Weinberg equilibrium test (P < 1 × 10−6). We also excluded par-
ticipants with missing SNPs >5%. Finally, 52,6101 autosome SNPs met
QC for Illumina OmniExpress chip, 671,348 autosome SNPsmet QC for
Illumina Zhonghua chip, and 514,369 autosome SNPs met QC for Illu-
mina Omini2.5. These cleaned SNPs were imputed against the 1000
Genomes reference panel (see details in our previous study49). SNPs
with imputation information score R2 ≥0.3, Hardy–Weinberg P value
≥1 × 10−6, MAF ≥1%, and per-SNP missingness ≤5% were kept. In total,
~6.8 million common autosomal chromosome SNPs were included
in further analyses. To remove close relatives, we first estimated
the genetic relationship for each pair of participants using
GCTA functions62,125 (https://yanglab.westlake.edu.cn/software/gcta/#
MakingaGRMresulting), which results in a genetic relationship matrix
(GRM). Each value in the GRM reflects the average correlation of SNP
values between two participants over a number of SNPs. Three pairs of
participants showed estimated genetic relatedness >0.05, so one
participant from each pair was randomly selected and removed. In
addition, to check the ancestry of the participants (e.g., Han Chinese),
we performed the principal component analysis (PCA)126 implemented
in the GCTA software62. Nine participants were identified as non-Han
Chinese and were then removed, leaving a final sample of 2110 Han
Chinese participants for further analyses (Supplementary Fig. 1).

Estimating the genetic correlations of the EF components
We applied the GCTA functions62 (version 1.26, https://cnsgenomics.
com/software/gcta/) to estimate genome-wide heritability and the
genetic correlations of EF components using the whole-genome data.
Briefly, we first estimated the pairwise genetic relationship matrix
(GRM) in a large-scale unrelated population by using dense SNPs.
Then,wefitted theGRM in a linearmixed-effectsmodel to estimate the
heritability of a trait. For the genetic correlation analyses, we fit the
GRM in a bivariate linearmixed-effectmodel127 to estimate the genetic
correlation of two traits128. To avoid spurious association due to sub-
population stratification, the principal component analysis (PCA) was
performed using functions in GCTA62 and the top ten ancestral
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principal components (PCs) were used. In addition, age, gender, gen-
otype array, and site (i.e., Beijing or Chongqing) were also included as
covariates in the model. We used the FDR method for multiple com-
parisons correction53.

Defining the candidate gene sets
To explore the genetic mechanism of each EF component, we first
extracted several candidate gene sets based on gene expression or
previous GWAS results. We extracted genes that showed enhanced
expression in EF component-specific brain regions, as compared to the
whole brain, using the “AllenBrainAtlas” (https://portal.brain-map.org/)
humanmicroarray dataset and the “differential search function”129,130. In
particular, we used a preprocessing pipeline131 to preprocess the genes.
Briefly, we first reannotated probes to genes with information from ref.
131. We filtered probes that did not exceed the background noise in
more than 50% samples, which resulted in 31,569 probes (15,633 genes)
for each tissue sample. These preprocessing steps were done using
abagen (https://github.com/netneurolab/abagen). We sorted genes by
fold change (log ratio of expression) and kept the top 1000 genes as
candidate gene sets. Finally, we extracted the SNPs within 35 kb (or
25 kb, 50 kb) upstream and downstream from the 3′ and 5′ untranslated
regions of each gene according to the UCSC hg19 assembly.

We also extracted five gene sets based on previous studies:
genes preferentially expressed in the CNS68,69, SNPs associated with
human intelligence test performance59 (https://ctg.cncr.nl/), SNPs
associated with educational attainment67 (https://www.thessgac.
org/data), SCZ-associated SNPs65 (https://www.med.unc.edu/pgc/
results-anddownloads/), ADHD-associated SNPs66 (https://www.
med.unc.edu/pgc/results-anddownloads/), and Crohn’s disease-
associated SNPs70 (https://www.ibdgenetics.org/#downloads), the
last of which was used as a negative control gene set. For the
functionally linked genes and central nervous network genes, we
defined genic boundaries as 50 kb upstream and downstream from
the 3′ and 5′ untranslated regions (UTRs) of each gene according to
UCSC hg19 assembly. For the rest of the gene sets, we ranked the
imputed SNPs in our study based on P values from the GWAS
summary statistic, and selected the relevant SNPs (e.g., top 10%, top
20%, top 30%) as associated SNPs of the corresponding traits.

Gene-set enrichment analysis using MAGENTA
We used functions in MAGENTA to estimate the enrichment pat-
tern of the candidate gene sets related to the EF components. It
tests whether candidate gene sets are enriched for genes asso-
ciated with a given complex trait, more than would be expected
by chance. We used the GWAS results as input and applied the
default settings. Briefly, we first mapped SNPs and their associa-
tion scores (P values) onto genes; then we scored each gene using
the most significant SNP P value; third, we corrected for con-
founding effects on the gene scores (e.g., gene sizes); finally, we
calculated a gene-set enrichment P value for each candidate gene
set. Multiple comparisons were corrected using FDR53.

Partitioning heritability enrichment analysis
The genome data was divided into two sets: one was the trait-
associated SNPs, and the other was defined as control SNPs. We cal-
culated two GRMs and used a joint analysis132 to estimate the genome-
wide SNP heritability as the sum of h2

set (heritability attributed to
candidate gene sets) and h2

Control (heritability attributed to the unse-
lected SNPs). Then,wecalculatedenrichment folds for eachgene set as
the ratio of the estimated h2

set to the expected h2
set (expect), using the

following formula:

enrichmentðXÞ= h2set
h2set expectð Þ

� �

Here, the expected h2
set (expect) was the genome-wide heritability

h2
gmultiplied by the percentage of the SNPs in the given set among all

SNPs. We then computed the z-score to determine the significance
level49,133. The same covariates as in the genome-wide heritability ana-
lyses were used. The FDR method was used for multiple comparisons
correction53.

High-dimensional mediation analysis
We used the MedMix method to perform high-dimensional med-
iation analyses (n = 870) of “gene set—functional connectivity—
EF factor scores”. This method37 was designed for mediation
analysis of high-dimensional independent measurements, high-
dimensional mediators, and a univariate dependent outcome.
In brief, the dependent measure Y is an n × 1 vector, the indepen-
dentmeasure Z is an n × qmatrix, themediator M is an n × pmatrix,
and Y, M, and Z are centered by column. See the following equa-
tions:

Y =Mγ + Zβ+ ϵ

Mj =ZBj +η_j j = 1, . . . ,p
ð1Þ

In the genome, most gene effect sizes might be weak, but not
equal to zero. Therefore, just like the SNP-based heritability studies,
here the effects of Z were modeled as random effects to reduce the
dimension of the parameter space. In other words, both β and Bj are
assumed to follow multivariate normal distributions. This practice
is quite common in genetic studies, as the effect sizes of individual
genes are typically small. Given that functional edges are also high-
dimensional, it is reasonable to focus on the proportion of total
genetic effect on the variance of EFs that can be mediated by brain
functional connection edges. Thus, the quantity of interest is the
proportion of the variance mediated (PVM), which is defined as the
ratio of the variance indirect effect (VIE) to the variance total effect
(VTE):

VTE = Bγ +βð ÞTVar zð Þ Bγ +βð Þ,VIE = Bγð ÞTVar zð Þ Bγð Þ
PVM =VIE=VTE

ð2Þ

Where Z is a length q vector, and B is a q × pmatrix whose jth column
is Bj.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The AHBA is available at https://human.brain-map.org/static/
download/. The Neurosynth database is available at https://
neurosynth.org/. The sources of the GWAS summary results are as
follows: schizophrenia and ADHD (https://www.med.unc.edu/pgc/
results-anddownloads/); intelligence test performance (https://ctg.
cncr.nl/); educational attainment (https://www.thessgac.org/data);
and Crohn’s disease (https://www.ibdgenetics.org/#downloads).
The list of genes preferentially expressed in the central nervous
system was obtained from the corresponding author of the study68.
The UCSC hg19 assembly: UCSC Human Gene Sorter. Behavioral
data to estimate EFs models can be found in Supplementary Data 1.
Raw data of the Cognitive Neurogenetic Study of Han Chinese
Young Adults (CNSCYA) Project are available from the corre-
sponding author on reasonable request. Restriction of raw data is to
protect the privacy of participants. Source data are provided with
this paper.

Code availability
Custom codes are variable at https://github.com/psychelzh/Struct_EF.
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