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A B S T R A C T

Intertemporal choice refers to the process of making decisions by weighing short- and long-term benefits and
costs. On average people prefer immediate rewards over delayed rewards with larger amounts, which is a form of
decision impulsivity. Based on previous research showing the importance of the dorsal medial prefrontal cortex
(DMPFC) in decision impulsivity, the present study examined whether regional homogeneity (ReHo) patterns in
DMPFC were associated with individual differences in intertemporal choices. Two cohorts of college students
(N¼ 239 and N¼ 227, respectively) were recruited and resting-state data were collected. Results from both
univariate and multivariate pattern analyses of the two cohorts consistently showed that ReHo patterns in the
DMPFC were associated with the delay discounting rate (i.e., log k). These results further support the important
role of DMPFC in intertemporal choice and have potential practical implications for decision making in our daily
life and at the level of national policies as well as for the treatment of clinical populations with decision
impulsivity (e.g., gamblers, individuals with substance use disorders).
1. Introduction

Humans are not always rational decision makers (Peters and Büchel,
2011). For example, people on average have the tendency to favor the
immediate smaller benefit rather than larger rewards in the future, a
phenomenon called intertemporal choice or decision impulsivity. Inter-
temporal choice is very common in our daily life and it also occurs when
making national policy decisions.

Frequently studied using a paradigm called the delay discounting task
(i.e., choosing between options of immediate and delayed rewards),
intertemporal choice is indexed by the delay discounting rate (k)
parameter calculated following the hyperbolic function (V ¼ A
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where V is the subjective value, A the rewardmagnitude, D the delay, and
k the delay discounting rate (Ainslie, 1975). Clinical patient studies have
suggested that choosing more immediate rewards (i.e., lager k value) is
linked to various psychiatric disorders such as substance abuse (Bickel
et al., 1999; Hu et al., 2015), pathological gambling (Alessi and Petry,
2003), and ADHD (Paloyelis et al., 2012).

With functional magnetic resonance imaging (fMRI), researchers
have uncovered the underlying neural systems supporting intertemporal
choice. For example, the frontal part of dorsal medial prefrontal cortex
(DMPFC) and the right frontal pole (FP) have been suggested to represent
delayed rewards, whereas the rear part of DMPFC represents immediate
rewards (Kable and Glimcher, 2007; Luo et al., 2013; McClure et al.,
, 400715, China.
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Table 1
The raw k-values, the relative frame wise displacement (FD) and their
correlations.

range mean SD

Beijing raw k-value 1.235e-04 →
0.104

0.012 0.013

FD 0.066 → 1.254 0.248 0.180

r p

Correlation between raw k
and FD

r¼ 0.0005 p¼ 0.994

Chongqing range mean SD
raw k-value 3.493e-04 -

0.123
0.022 0.021

FD 0.043–0.255 0.108 0.044

r p

Correlation between raw k
and FD

0.082 0.233

C. Lv et al. NeuroImage 200 (2019) 556–561
2004). Peters and Büchel, 2011 reviewed published neuroimaging
studies and identified three neural networks underlying decision
impulsivity, including the valuation, cognitive control, and prospect
networks. In the valuation network, the core nodes include the ventro-
medial prefrontal cortex (VMPFC), ventral striatum (VS), and posterior
cingulate cortex (PCC). Increased activity in this system has been linked
to more impulsive choice (i.e., lager k value) and action (Peters and
Büchel, 2011).

Converging evidence from neuroimaging studies has suggested that
the medial prefrontal cortex is the hub region supporting decision mak-
ing. Specifically, this part of the brain is involved in representing the
subjective values, including the subjective value of the delayed rewards
(Kable and Glimcher, 2007) and subjective value under risk and ambi-
guity (Levy et al., 2010). It is also involved in the calculations of reward
prediction (Knutson and Cooper, 2005) and decision values (Chib, Ran-
gel, Shimojo and O’Doherty, 2009); the integration of different attribute
value signals (such as visual appearance and semantic knowledge) (Kable
and Glimcher, 2007); time processing, with recent time engaging pos-
terior areas whereas distant time engaging anterior areas (Koritzky et al.,
2013); cognitive control (Cavanagh and Frank, 2014; Ridderinkhof, van
den Wildenberg, Segalowitz and Carter, 2004); and impulsivity (Luh-
mann et al., 2008; Mitchell et al., 2011; Sripada et al., 2011). In parallel
with these studies, patients with damaged medial prefrontal cortex
showed a larger delay discounting rate and most of them had no concern
about the future consequences of their decisions (Bechara et al., 1994).
Our previous study also found that DMPFC and FP represented the size of
delayed rewards and regulated the ventral lateral prefrontal cortex to
guide later decisions (Wang et al., 2014).

In addition to fMRI studies of the medial prefrontal cortex, structural
studies have also revealed other neural correlates of intertemporal
choices. For example, the grey matter volumes of the dorsal medial
prefrontal cortex and the right FP (Bjork et al., 2009; Wang et al., 2016),
the white matter volume of the right frontal lobe, and hippocampal and
parahippocampal cortex were all correlated with decision impulsivity
(Yu, 2012). The structural and functional connectivities between the
lateral frontal lobe and ventral striatum (Peper et al., 2013; van den Bos
et al., 2014) were also found to predict decision impulsivity.

Although resting state functional imaging is widely used in cognitive
neuroscience literature, it has rarely been used to study the brain cor-
relates of intertemporal choices. Resting state scans were normally used
to construct functional connectivities or voxel wise regional homogeneity
(ReHo) (Zang et al., 2004). ReHo is a voxel-based measure of brain ac-
tivity that evaluates the similarity or synchronization between the time
series of a given voxel and its nearest neighbors by calculating the Ken-
dall’s coefficient of concordance. ReHo has proven to be directly asso-
ciated with task-based activation and deactivation (Zang et al., 2004).
The default mode network (DMN), constructed using ReHo, was very
similar to that constructed by other methods in resting state fMRI (Long
et al., 2008). It was also similar to the pattern of DMN in cerebral blood
flow (Zou et al., 2009), and to the spatial pattern of glucose metabolism
(Aiello et al., 2015; Bernier et al., 2017). A number of studies have
identified abnormal ReHo patterns in individuals with neurological and
psychiatric disorders, such as Alzheimer’s disease (He et al., 2013),
schizophrenia (Liu et al., 2006), and Parkinson’s disease (Wu et al.,
2009).

Using resting-state fMRI, the present study investigated whether the
ReHo patterns of DMPFC would be associated with individual differences
in intertemporal choices. Two relatively large samples were recruited to
cross-validate our results.

2. Materials and methods

2.1. Participants

A total of 497 college students participated in this study. These par-
ticipants were from two cohorts, one from Beijing (N¼ 257) and the
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other from Chongqing (N¼ 240). Due to significant head motions (larger
than 2mm in any direction) during the scan, 18 subjects (7.5%) of the
Beijing sample and 13 (5.7%) of the Chongqing sample were excluded
from final data analysis, yielding the final samples of 239 (124 females,
aged 23.6� 2.14 years) for the Beijing cohort and 227 (143 females,
aged 20.9� 1.17 years) for the Chongqing cohort. The frame wise
displacement and the correlation between head motion and k rate are
shown in Table 1. None of the subjects had neurological or psychiatric
history according to self-report. Written informed consent was obtained
from subjects before experiments. This study was approved by the
Institutional Review Boards of Beijing Normal University and Southwest
University.

2.2. Intertemporal choice task

Fig. 1 illustrates the stimuli and the experimental design of the
intertemporal choice task with adaptive change of the k values (van den
Bos et al., 2014; Wang et al., 2016). In this task, subjects had to choose
between a fixed small sooner reward (SS, ¥60 received today) and a
larger later (LL) reward. The amount of the LL reward was set from ¥78 to
¥108, and the delay (D) was set from 15 to 45 days in the future. It was
made clear to the participants that the money in this choice task was
hypothetical. Previous studies (Johnson and WK, 2002; Lagorio and
Madden, 2005) have found no systematic differences in the delay dis-
counting rate in response to real and hypothetical choices, suggesting
that hypothetical rewards may serve as a valid proxy for real rewards in
delay discounting research. The delay discounting rate parameter k was
calculated according to the hyperbolic function. The initial k was set to
0.02. If the participants chose the immediate option, the delay dis-
counting rate k was increased by having a lager LL on the next trial; if the
participants chose the delayed option, the delay discounting rate k was
decreased by having a small LL on the next trial. There were 60 trials in
total. For the first 20 trials, the size of each step was 0.01 and for the
remaining 40 trials the step size was 5% of the previous k value.

2.3. Functional imaging procedure

For the Chongqing sample, all brain imaging data were acquired on a
3T Siemens Trio scanner at Southwest University (Siemens Medical
Systems, Erlangen, Germany). The anatomical structural scan was ac-
quired using a T1-weighted MPRAGE sequence (TI¼ 900ms; TR/
TE¼ 1900ms/2.52ms; flip angle¼ 9�; 176 sagittal slices; 256� 256
matrix size with spatial resolution as 1� 1� 1mm3). The resting state
functional MRI data were scanned with gradient echo type plane echo
imaging (GRE-EPI) sequence, and the scanning parameters were: TR/
TE¼ 2000ms/30ms; Flip angle¼ 90�; FOV¼ 220� 220mm2; 64� 64
matrix size with a resolution of 3.4� 3.4� 4mm3.



Fig. 1. Adaptive delay discounting task and the distributions of delay discounting rates. A. For each trial, subjects had to choose between a fixed reward (¥60) and a
larger later reward. The delay period (D) for the larger later (LL) reward was randomly chosen from ¥78 to ¥108 between 15 and 45 days in the future. B. Normal
distribution of the impulsive decisions (log k) of the Chongqing sample (kolmogorov-smirnov¼ 0.84, p¼ 0.48). C. Normal distribution of the impulsive decisions of
the Beijing sample (kolmogorov-smirnov Z¼ 1.033, p¼ 0.24).
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For the Beijing sample, imaging data were acquired on a 3T Siemens
Trio scanner at Beijing Normal University with the same version of
hardware/software as at Southwest University. Similarly, anatomical
structural scan was acquired using a T1-weighted MPRAGE sequence
(TI¼ 800ms; TR/TE¼ 2530/3.1ms; flip angle 10�; 208 sagittal slices;
256� 256 matrix size with spatial resolution as 1� 1� 1mm3). Resting
state fMRI data were acquired using the EPI sequence, and the specific
parameters were: TI¼ 900ms; TR/TE¼ 2000/25ms; flip angle¼ 90�;
matrix size¼ 64� 64; and resolution¼ 3.4� 3.4� 4mm3. The slices
were tilted 30� clockwise from the AC-PC plane to obtain better signals in
the orbitofrontal cortex.

2.4. Behavioral data analysis

The statistical analysis of behavior data was completed by using
MATLAB programming language (Mathworks Inc.). For the inter-
temporal choice task, multidimensional unconstrained nonlinear mini-
mum function (fminsearch) of MATLAB was used to fit the hyperbolic
function. In order to better simulate the selection of trial each time,
softmax function was used to calculate the probability of selecting the
immediate option based on the difference between the immediate reward
value and the delayed reward value: Pss ¼ 1

1þe�ðvss�vll Þ�m, where m repre-

sents decision slope, Pss the probability of choosing the sooner smaller
option, and vss and vll the values of the sooner smaller and larger later
options, respectively. Individual delay discounting rate (k) was deter-
mined by maximizing the likelihood of forecasting decisions. Since the
original delay discounting rate was not normally distributed, a log10
transformation was applied (log (k)) (van den Bos et al., 2014; Wang
et al., 2014).

2.5. Resting-state fMRI data analysis

The preprocessing of all resting state fMRI data was done using the
DPARSF software on the MATLAB platform (http://www.rfmri.o
rg/DPARSF). Because the signals at the beginning of scanning were un-
stable and the subjects needed to adapt to the scanning environment, the
data of the first 10 time points were discarded. The data of the remaining
232 time points were corrected by different layer acquisition time (i.e.,
slice timing correction), and the acquisition time of all layers was cor-
rected to the intermediate time of the image acquisition TR. The head
motion correction was then performed, and then all functional images
were registered to the standard image in theMNI space, and resampled to
3� 3� 3mm3. Images were smoothed with the 8mm Gaussian kernel.
White matter signal, cerebrospinal fluid signal, whole brain signal, and 6
head motion parameters were regressed as covariates (Dai et al., 2015;
Fox et al., 2009). Data were then filtered with a band pass filter of
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0.01–0.08 Hz (Hacker et al., 2012; Shin et al., 2014). ReHo was calcu-
lated voxel-wise and Fisher Z transformation was applied before the final
statistical analysis.

2.6. Support vector regression (SVR) analysis

Epsilon-insensitive SVR of a linear kernel, implemented in PyMVPA
(http://www.pymvpa.org), was used to test the multivariate prediction
of brain activation and/or ReHo from individual delay discounting rates.
High-dimensional regression Multivariable Pattern Analysis (MVPA) was
performed using a searchlight procedure with a 3-voxel radius. This
procedure allowed an evaluation of the pattern of ReHo across voxels
without contamination from the mean signal differences within the
searchlight. The epsilon was 0.01 based on previous studies (He et al.,
2013; Huang et al., 2018; Wang et al., 2016).

Ten-fold cross-validation analyses were used. All participants were
divided into 10 groups and matched by gender and corresponding
behavioral performance (log k). For each iteration, 9 groups of in-
dividuals were selected for training according to the SVR model. The
remaining group of subjects was predicted by the classifier obtained, and
the predicted value and the real value (log k) were analyzed using
Pearson correlation. Results from the 10 validations were averaged and
assigned to this voxel. Finally, the generated whole brain r values were
converted into a z-map. The threshold for the group images was based on
cluster detection statistics, with a height threshold of z> 2.3 and a cluster
probability of p< 0.05, corrected for whole-brain multiple comparisons
using Gaussian Random Field Theory.

2.7. Univariate correlation analysis

In order to further illustrate the direction of correlations between
ReHo values and behavioral delay discounting rate (log k), significant
clusters in the MVPA analysis were used as region of interests (ROIs) to
extract the average ReHo value for each ROI. Robust regression, imple-
mented in the MATLAB Statistics Toolbox, was used for all correlations to
minimize the impact of outliers. The analytical steps were the same for
the two cohorts. To avoid the double dipping problem, we only reported
the relevant directions, not the r and p values (Kriegeskorte et al., 2006).

3. Results

3.1. Behavioral results

The average delay discounting rates (log k) were �1.85 (SD¼ 0.42,
ranging from �3.46~-0.91) in the Chongqing sample and �2.15
(SD¼ 0.47, ranging from �3.91~-0.98) in the Beijing sample. The log k
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Table 2
Brain regions whose ReHo predicted delay discounting rate: MVPA of the
Chongqing sample.

Brain Regions L/R No. Voxels MNI Coordinates Prediction
Accuracy

x y z

DMPFC/FP R 2716 12 36 28 0.327
Orbitofrontal cortex L 327 �50 24 �12 0.210
Superior frontal gyrus L 809 �6 16 58 0.312
Putamen L 397 �22 6 0 0.219
Posterior PFC R 706 30 46 �18 0.237
Frontal pole L 442 �18 60 �10 0.223
insula R 714 40 16 �10 0.232
Cuneal cortex R 605 18 �72 30 0.248
POC L 374 �58 �28 14 0.214
cerebellum R 483 10 �66 �22 0.251
Lateral occipital cortex L 371 �24 �78 30 0.212
Occipital pole R 308 4 �92 �14 0.194
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was normally distributed (Kolmogorov-Smirnov Z¼ 0.84, p¼ 0.48, in
Chongqing and Z¼ 1.033, p¼ 0.24, in Beijing) (Fig. 1B and C). The log k
was significantly higher in the Chongqing sample than in the Beijing
sample (t¼ 7.06, p< 0.0001). The raw k-values are listed in Table 1.

4. Imaging results

4.1. ReHo

MVPA showed that in the Chongqing sample the ReHo of right dorsal
medial prefrontal cortex was a predictor of the delay discounting rate (log
k) (DMPFC; MNI¼ 12, 36, 28, prediction accuracy r¼ 0.327) (Fig. 2A).
Other predictors included ReHo of the following brain regions: the right
insula (MNI¼ 40, 16, �10, r¼ 0.232), left orbital frontal cortex (OFC;
MNI¼�50, 24, �12, r¼ 0.21), left superior frontal gyrus (SFG;
MNI¼�6, 16, 58, r¼ 0.312), left putamen (MNI¼�22, 6, 0, r¼ 0.219),
right posterior PFC (MNI¼ 30, 46, �18, r¼ 0.237), left frontal pole (FP;
MNI¼�18, 60,�10, r¼ 0.223), right cuneal cortex (MNI¼ 18,�72, 30,
r¼ 0.248), left posterior occipital lobe (POC; MNI¼�58,-28, 14,
r¼ 0.214), right cerebellum (MNI¼ 10,�66,�22, r¼ 0.251), left lateral
occipital lobe (LOC; MNI¼�24, �78, 30, r¼ 0.212), and right occipital
pole (OP; MNI¼ 4, �92, �14, r¼ 0.194) (Table 2). In order to investi-
gate the direction of the association between the dorsal medial prefrontal
cortex and impulsivity, further univariate correlation analysis showed
that the ReHo of the DMPFC was negatively correlated with the delay
discounting rate (Fig. 2B). It is worth noting that even when stricter
criteria were used (z> 3.1, p< 0.001; FWE corrected p< 0.05), the
above-mentioned results remained significant (Fig. 1 and Table 1).

Results from the Beijing sample replicated those of the Chongqing
sample. Predictors of the delay discounting rate (log k) included ReHo of
Fig. 2. The brain region whose ReHo was significantly correlated with delay
discounting rate. A. The delay discounting rate k was successfully predicted by
the ReHo of dorsal medial prefrontal cortex (DMPFC; MNI¼ 12, 36, 28, pre-
diction accuracy r¼ 0.327) in the Chongqing sample. B. Scatterplot shows the
significant negative correlation between the ReHo of DMPFC and the delay
discounting rate in the Chongqing sample. C. The delay discounting rate k was
successfully predicted by the ReHo of DMPFC (MNI¼�4, 42, 14, r¼ 0.198) in
the Beijing sample. D. Scatterplot shows the negative but not significant cor-
relation between the ReHo of DMPFC and the delay discounting rate in the
Beijing sample.
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the left dorsal medial prefrontal cortex (DMPFC) (MNI¼�4, 42, 14,
r¼ 0.198) (Fig. 2C), the right insula, left posterior cingulate (PCC), right
supramarginal gyrus (SMG), right lateral occipital cortex (LOC), left su-
perior parietal lobule (SPL), right thalamus, right frontal pole, right
auxiliary motor area (SMA), and right orbital frontal cortex (OFC)
(Table 3). Further univariate correlation analysis confirmed that the
ReHo of the DMPFCwas negatively correlated with the delay discounting
rate as for the Beijing sample (Fig. 2D). When we extracted the ReHo of
DMPFC predefined based on the peak of DMPFC in the Chongqing
sample, validation analysis revealed a significant correlation between
ReHo in DMPFC and decision impulsivity (r¼ 0.142, p¼ 0.035)
(Fig. S1).

5. Discussion

With a large sample of college students, the present study examined
whether regional homogeneity (ReHo) in the dorsal medial prefrontal
cortex (DMPFC) was correlated with intertemporal choices. Both uni-
variate and multivariate pattern analyses suggested that ReHo of the
dorsal medial prefrontal cortex c was associated with decision impul-
sivity. Univariate analysis showed that they were negatively correlated,
with higher ReHo being associated with lower decision impulsivity. This
result was consistent between the two samples (Beijing and Chongqing).
As far as we know, this study was the first to examine the relationship
between the ReHo of medial prefrontal cortex and decision impulsivity.
The results were consistent with our previous finding that different
anatomical structures of the dorsal medial prefrontal cortex represented
immediate and delayed reward size separately (Wang et al., 2014).

Evolutionary research has shown that the development of prefrontal
cortex is later in human than in primates. In fact, the human prefrontal
cortex does not mature until early adulthood, perhaps because it plays an
unusually important role in human adaptation and higher functions,
including human cognition, memory, thinking, reasoning, imagination,
and various types of decision-making such as risk decision-making,
intertemporal decision-making and social decision-making (Wang
et al., 2014).

Evidence from lesion studies showed that patients with medial pre-
frontal cortex injury were more likely to ignore the future and to focus
only on current benefits (Bechara et al., 1994; Bechara et al., 2000).
Sripada et al. (2011) used Barrett Impulsivity Scale (BIS) to measure trait
impulsivity and also scanned the subjects while they performed the
intertemporal choice task. They found a significant negative correlation
between the activation level of medial prefrontal cortex and trait
impulsivity score. Luhmann et al. (2008) also found that activation in the
medial prefrontal cortex was negatively correlated with choosing
delayed rewards. Our previous study also showed that the anterior part of
the dorsal medial prefrontal cortex represented the subjective value of
delayed rewards (Wang et al., 2014). Therefore, we believe that the



Table 3
Brain regions whose ReHo predicted delay discounting rate: MVPA of the Beijing
sample.

Brain Regions L/R No. Voxels MNI Coordinates Prediction
Accuracy

x y z

DMPFC L 90 �4 42 14 0.198
PCC L 1385 �4 �36 24 0.286
Pallidum/insula R 1202 16 4 �4 0.260
Supramarginal gyrus R 690 54 �36 24 0.217
Lateral occipital cortex R 649 46 �72 �22 0.226
Superior parietal lobule L 591 �24 �54 44 0.253
Thalamus R 587 18 �36 0 0.230
Frontal pole R 539 12 72 14 0.264
SMA R 411 6 �10 66 0.218
Lateral occipital cortex R 389 24 �76 54 0.247
Orbital frontal cortex R 291 14 30 �26 0.236
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dorsal medial prefrontal cortex mainly represents delayed rewards, so its
ReHo patterns are associated with decision impulsivity.

Intertemporal decision reflects decision impulsivity. The research on
the mechanism of decision impulsivity mainly emphasizes the partici-
pation of three neural network systems, namely, the value, cognitive
control, and prospect network systems (Peters and Büchel, 2011). A
number of studies have shown that the value network system is regulated
by the prefrontal cortex, as well as by upstream input from the hippo-
campus (Hare et al., 2009; van den Bos et al., 2014). Our results repli-
cated these findings, confirming the importance of the value network,
particularly the medial prefrontal cortex, in the representation of delayed
rewards. Specifically, the posterior medial prefrontal cortex (pDMPFC)
represents immediate reward and the anterior medial prefrontal cortex
(aDMPFC) represents of delayed reward. In addition, the ventromedial
prefrontal cortex (VMPFC), the posterior cingulate cortex (PCC) and the
nucleus accumbens (NAcc) are mainly responsible for representing de-
cision values, while the anterior cingulate cortex is responsible for de-
cision difficulty (Wang et al., 2014). The dorsal medial prefrontal cortex
plays a role in intertemporal choice through two mechanisms. One was
the functional connectivity between the dorsal medial prefrontal cortex
and the hippocampus. The other was the functional connectivity among
the dorsal medial prefrontal cortex/frontal pole, the ventral prefrontal
cortex, and ventral striatum. The dorsal medial prefrontal cortex, which
is responsible for representing the value of delayed rewards, regulates the
ventral lateral prefrontal cortex to represent the value of decision-making
and thereby affect subsequent selections.

MVPA has important advantages over univariate analysis when
exploring the neural representation of rewards and the neural mecha-
nism behind intertemporal decision making. For example, it takes full
advantage of the information from the voxels that do not show significant
activation at the univariate level. MVPA is more sensitive than the uni-
variate analysis in detecting differences in cognitive state because it uses
relatively raw data. Finally, MVPA can detect signal changes of the pol-
ypheromones to better capture the inherentlymultivariate characteristics
of brain imaging data.

Althoughwe have found that the ReHo of the medial prefrontal cortex
and brain activation patterns play an important role in decision impul-
sivity, our study had some shortcomings that need to be mentioned. First,
our study only correlated brain function and behavior performance, so it
was unable to address the question of causality. Second, our study did not
examine the reasons behind the relationship between the ReHo of the
dorsal medial prefrontal cortex and decision impulsivity. Further
research is still needed to understand how the dorsal medial frontal
cortex regulates intertemporal choice. Future research needs to verify
and repeat the above results from the perspective of nerve fibers. Third,
although ReHo had proven to be able to construct long range connec-
tivities such as the default mode network (Long et al., 2008), and it still
only considers the information of the nearest voxels (i.e., short connec-
tivity). Future studies should examine if the long distance connectivity
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contributes to decision impulsivity. Last, the effect size of this relation-
ship was modest and we call future studies to replicate the results of the
present study.

In summary, this study used two independent large samples for the
first time to investigate the neural mechanism of individual differences in
intertemporal choice. This study also adopted multi-voxel pattern anal-
ysis (MVPA) for the first time with cross validation, which improved the
sensitivity of the test results. Results showed that the ReHo patterns of
dorsal medial prefrontal cortex was a predictor of decision impulsivity,
with higher ReHo predicting lower decision impulsivity. These results
were replicated between the two samples. Our results provide not only
important empirical support for theoretical models of the neural basis of
intertemporal choice but also practical implications for effective inter-
vention with decision impulsivity.
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