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Transcranial direct current stimulation (tDCS) is a widely-used tool to induce

neuroplasticity and modulate cortical function by applying weak direct current over the

scalp. In this review, we first introduce the underlying mechanism of action, the brief

history from discovery to clinical scientific research, electrode positioning and montages,

and parameter setup of tDCS. Then, we review tDCS application in clinical samples

including people with drug addiction, major depression disorder, Alzheimer’s disease,

as well as in children. This review covers the typical characteristics and the underlying

neural mechanisms of tDCS treatment in such studies. This is followed by a discussion

of safety, especially when the current intensity is increased or the stimulation duration

is prolonged. Given such concerns, we provide detailed suggestions regarding safety

procedures for tDCS operation. Lastly, future research directions are discussed. They

include foci on the development of multi-tech combination with tDCS such as with TMS

and fMRI; long-term behavioral and morphological changes; possible applications in

other research domains, and more animal research to deepen the understanding of the

biological and physiological mechanisms of tDCS stimulation.

Keywords: transcranial direct current stimulation (tDCS), drug addiction, Alzheimer’s disease, major depression

disorder, safety, decision neuroscience, cognitive neuroscience

INTRODUCTION

Brain activity is based on electronic firing of neurons. Thus, the possibility of being able
to modulate, facilitate or disrupt this electric activity is appealing; it can help with creating
temporary or somewhat permanent desirable brain changes. Various ways to achieve these
goals, all of which focus on transcranial stimulation have been developed over the years. These
include transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS),
transcranial alternating current stimulation (tACS), transcranial random noise stimulation (tRNS),
transcranial pulsed current stimulation (tPCS), and transcranial ultrasound stimulation (TUS)
(Chen et al., 1997; Paulus, 2011; Tufail et al., 2011; Jaberzadeh et al., 2014). Among these methods,
TMS and tDCS have been widely adopted and used in both healthy and clinical samples. This study
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focuses on tDCS and reviews its theoretical underpinnings, its
uses and applications, outcomes and risks. Reflecting on these
issues, this study provides recommendations for alleviating risks
in future tDCS studies.

tDCS is a tool to induce neuroplasticity and modulate cortical
functioning by applying weak direct current over the scalp of
participants (Stagg and Nitsche, 2011). It has been widely used
over the past decade, and has made significant contributions in
the field of neuroscience and psychology (Fregni and Pascual-
Leone, 2007). It is a noninvasive neuro-modulatory technique,
which can reduce bidirectional polarity-dependent changes in
underlying cortical areas. It can operate as both an exciter or
an inhibitor of brain activity in regions of interest. Specifically,
anodal stimulation can increase the excitability of such regions,
whereas cathodal stimulation diminished it (Nitsche and Paulus,
2000; Antal et al., 2003). In addition, the electric current applied
by tDCS can modulate the level of membrane potential as well
as the firing rates of targeted cortical neurons (Nitsche and
Paulus, 2000). The effects of tDCS stimulation can be long-
lasting; the durability of such effects is a function of the duration
and magnitude of the applied current. For example, it has been
shown that the after-effect of a 13-min continuous stimulation
can last up to 90 min (Nitsche and Paulus, 2001).

Given the persistent and possibly clinically useful effects of
this noninvasive brain stimulation technique, tDCS has been
utilized by clinicians and neuroscientists to treat mental and
neurological disorders. Early attempts are dated to the nineteenth
century. For instance, in 1804, the Italian physicist Giovanni
Aldini successfully treated melancholic patients using electronic
stimulation (Aldini, 1804). Later, Erb (1886) combined tDCS and
muscle faradization to rehab motor function in chronic stroke
patients. However, in the 1930s, the electroconvulsive therapy by
Cerletti and Bini (1938) which aimed at helping patients with
severe schizophrenia has overshadowed tDCS; this has led to the
relative loss of interest in tDCS for 30 years (Utz et al., 2010).
The interest in tDCS was regained in the 1960s, but was later
neglected due to inconsistent results in human trials (Wagner
et al., 2007). These inconsistencies can be attributed to difficulties
in quantifying the stimulating current densities, electrode
configurations, duration of stimulation, and/or frequency of
stimulation (Barker, 1994; Nitsche and Paulus, 2000). Over the
last decade, vast developments in neuroscience have brought new
life to tDCS; it has been suggested that tDCS can be a potential
treatment for drug addictions (Conti and Nakamura-Palacios,
2014; Wang et al., 2016), strokes (Hummel et al., 2006), epilepsy
(Fregni et al., 2006d), Parkinson’s disease (Fregni et al., 2006b),
chronic pain (Fregni et al., 2007), Alzheimer’s disease (Ferrucci
et al., 2008a), and depression (Nitsche et al., 2009).

Despite the recent wide use of tDCS in a number of studies,
the underlying mechanisms of the cortical excitatory/inhibitory
effect of tDCS have not yet been fully understood (Arul-
Anandam and Loo, 2009; Bikson et al., 2009). Furthermore,
concerns regarding the safety of clinical treatment with tDCS
have been raised. It is therefore important to synthesize
knowledge regarding how tDCS works, when it works and risks
associated with its use, in order to facilitate a more focused and
safer use of tDCS in future research. To this end, in this review, we

first introduce the basics of tDCS techniques, their protocols and
typical montages. Then, the potential underlying mechanisms of
tDCS, as well as the advantages of tDCS over other invasive and
non-invasive brain stimulation techniques are discussed. Next,
we describe key clinical applications among various populations,
such as drug addicts, people with major depression disorder,
and Alzheimer’s disease. Following the description of tDCS
applications, we discuss possible adverse effects of tDCS and
safety procedures; these aspects are emphasized in relation to the
use of tDCS in children. Lastly, potential directions for future
research are proposed. These mainly focus on combining tDCS
with other neuroscience techniques and extending the use of
tDCS to other research domains.

TDCS BASICS

tDCS Protocols
Most tDCS studies we reviewed have adopted similar stimulation
protocols, which we describe below. The protocol typically
includes applying a pair of sponges (about 25–35 cm2) soaked
with approximately 6 ml saline solution (in rare cases, water) to
stimulate the target site around 20 min with direct currents of 1–
2 mA. The electrodes used in tDCS are typically a pair of metal
or conductive rubber wrapped in a perforated sponge pocket.
The sponges are soaked with saline solution to minimize skin
resistance. An alternative choice that is occasionally employed
is the use of rubber electrodes with conductive gel. The size
of such electrodes is typically 25–35 cm2. Electrode positioning
is usually determined according to the international 10–20
electrode placement system. Constant current of 1–2 mA is
delivered to the subject’s scalp through anodal and cathodal
electrodes with a ramp up and ramp down period of 30 s at
the start and end of the session. Researchers have demonstrated
that the after-effect of 10–30 min tDCS stimulation could last
for about 1.5 h (Nitsche and Paulus, 2000; Nitsche et al.,
2003a).

Potential Montages
Montages refer to the potential configurations of the electrodes;
different arrangements and placements produce different results
as they send currents through and stimulate different brain
regions. Bi-cephalic tDCS is a common montage. It involves a
cathodal electrode which decreases the function of the targeted
brain areas whereas the anodal electrode increases this function
(Nitsche and Paulus, 2000; Nitsche et al., 2003b). However,
there can be variability in the placement and configuration
of electrodes and this can result in different, and sometimes
opposite results. For example, Moliadze et al. (2010) provide
some of the strongest clinical evidence to-date that the relative
position of stimulation can affect neuromodulation under each
electrode. Moreover, increasing electrode distance may decrease
the magnitude of neuro-modulation, depending on the specific
montage and physiological measure employed (Bikson et al.,
2010). It should be noted that different activity of the reference
electrode site produces different brain activity modulation of the
target site. Therefore, most published studies used an alternative
solution involving the placement of a large reference electrode at
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the contralateral orbita; this choice was made because the current
under the large electrode is dispersed (Nitsche et al., 2007).

Mono-cephalic tDCS, is another common montage; it
involves the placement of an extra-cephalic reference electrode
for monocephalic stimulation. This approach helps eliminating
the confounding effects of the reference electrode on the
head. This protocol has been adapted by many studies with
different montages and various placements of the extra-cephalic
reference electrode. Placements of the electrode have included,
for instance: M1 and ipsilateral shoulder (Accolla et al., 2007),
inion and neck base (Accornero et al., 2007), left fronto-
temporal areas or inion and right shoulder (Monti et al., 2008),
bi-frontal and non-dominant arm (Koenigs et al., 2009), bilateral
dorsolateral prefrontal cortex and right deltoid (Priori et al.,
2008). However, safety concerns regarding the currents passing
through the brainstem, which may produce nausea, respiratory
difficulty, muteness, and impaired fine motor control have been
raised (Lippold and Redfearn, 1964). Nevertheless, additional
evaluations of the local electric field distributions generated by
tDCS with an extra-cephalic reference electrode revealed that
the brainstem’s cardio-respiratory and autonomic centers were
not modulated by an extracephalic reference electrode (Im et al.,
2012).

The third type of tDCS montage is non-cephalic tDCS.
In this montage the direct current stimulation is delivered to
non-cortical brain areas. For example, Ferrucci et al. (2008b)
stimulated the cerebellum with tDCS; they found that this
stimulation impaired the practice-dependent elevation of the
reaction times in a working memory task. Similarly, Galea
et al. (2009) investigated the inhibitory role of the cerebellum
on motor-evoked potentials (MEPs) elicited by transcranial
magnetic stimulation (TMS) over the motor cortex, and revealed
that MEPs could be modified by tDCS in a polarity-specific
manner. Figure 1 depicts the above-discussed montages.

Underlying Mechanisms of tDCS
Although the exact underlying mechanisms of tDCS effects on
cortical excitability have not been fully understood, two potential

mechanisms were proposed (for reviews, see Arul-Anandam and
Loo, 2009; Brunoni et al., 2012a). First, Arul-Anandam and Loo
(2009) argued that anodal stimulation propelled neuronal resting
membrane potential toward depolarization, while cathodal
stimulation propelled resting membrane potential toward
hyperpolarization. While this theory can explain the short-term
effects of tDCS, it fails to provide an adequate explanation for
the long lasting effect of tDCS. This limitation stems from the
fact that one single session of tDCS could elicit long lasting after-
effects (Nitsche and Paulus, 2001; Nitsche et al., 2003b) while
changes in resting membrane potential are short-lived.

Second, it was suggested that tDCS could also induce synaptic
changes by adjusting the strength of synaptic transmission, a
mechanism similar to long-term potentiation (LTP) and long-
term depression (LTD) (Nitsche et al., 2003c). For example,
recent evidence from pharmacologic studies reported that the
after-effects of anodal tDCS were considerably shortened by
the injection of propranolol (PROP), a β-receptor antagonist.
In other words, N-Methyl-D-aspartate (NMDA) receptor-
dependent LTP could be modified by anodal tDCS (Stagg and
Nitsche, 2011). Furthermore, Fritsch et al. (2010) demonstrated
that brain-derived neurotrophic factor (BDNF; a neurotrophin
that is important in late-phase LTP) was essential for the
after-effects of direct cortical stimulation. The pharmacologic
modulation of glutamatergic activity can contribute to the
cathodal tDCS after-effects as well (Stagg and Nitsche, 2011).
Ultimately, while the exact neural mechanisms underlying tDCS
are largely unknown, the abovementioned theories provide
possible accounts for what drives tDCS effects and its efficacy in
achieving short- and long-term brain modulations.

Advantages of tDCS Over Other Invasive
and Non-invasive Brain Stimulation
Techniques
Compared to other cognitive neuroscience methods such as
invasive brain stimulations (e.g., deep brain stimulation, epidural
cortical stimulation), tDCS is presumed to be safer and cheaper.

FIGURE 1 | (A) Bi-cephalic (anode in red, cathode in yellow); (B) Mono-cephalic tDCS (active anode or cathode in red, the extra-cephalic reference electrode in gray);

(C) Non-cephalic tDCS (active anode or cathode in red, the non-cortical reference electrode in gray).
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Invasive brain stimulation methods are associated with surgical
risks (infection, acute inflammation, and/or seizures; Zaghi
et al., 2009), and tend to involve more expensive medical labor
(e.g., neurosurgeons). Like other manipulation techniques, but
with minimal discomfort, low cost, and no invasion, tDCS can
directly manipulate the brain function in regions of interest
and thereby help examining the effect of those manipulations
on behaviors or produce desirable transient activity changes.
The research potential of tDCS is therefore in that it could
find causal relationships between specific brain regions and
behavioral changes. Furthermore, it can help pointing to needed
brain regions for different cognitive, subconscious and behavioral
brain processes, like lesion studies do, but without the permanent
brain damage.

tDCS can also be advantageous compared to transcranial
magnetic stimulation (TMS; another noninvasive technique used
to influence neuronal activity). First, tDCS is relatively low
cost, user-friendly, portable and tolerable (Priori et al., 2009;
Zaghi et al., 2009; Brunoni et al., 2011a,b; Kessler et al., 2012).
Second, tDCS can be easily combined with pharmacotherapy.
For example, Brunoni et al. (2011c) have demonstrated that the
combined use of tDCS and Sertraline (an antidepressant of the
selective serotonin reuptake inhibitor class) requires decreasing
dosage injects in clinical trials. Third, tDCS is relatively safe
(safety will be discussed later in this manuscript), while TMS
has been associated with the potential for causing seizures if
inappropriately applied (Classen et al., 1995). Fourth, tDCS tends
to have better experimental control because sham (placebo)
stimulation is indistinguishable from real stimulation. Sham
stimulation is administrated by increasing current over several
seconds (typically 30 s) to the target brain region, and then
fading off over several seconds. Using this procedure, subjects
theoretically obtain the same experience as they do during real
stimulation such as itching and tingling. The sensations are
transient in real stimulation as well as in sham stimulation
because subjects get used to the current in real stimulation,
whereas the current tapers off in sham stimulation (Kessler
et al., 2012). Finally, it may be easier to produce longer-lasting
modulatory effects of cortical function with tDCS than with TMS
(Fregni et al., 2006a). Overall, the advantages of tDCS over other
invasive and non-invasive brain stimulation techniques make it
an important technique that merits further research.

TDCS APPLICATIONS IN CLINICAL
SAMPLES

Given the above-mentioned advantages and capacities of tDCS, it
is not only used as a tool for neuroscience research, but can also
be applied for the assessment and treatment of various psychiatric
and neurological disorders, including drug addiction, major
depression disorder, and Alzheimer’s disease. Table 1 describes
the select studies discussed in this article.

tDCS Use in Drug Addiction Treatment
Addiction is a persistent psychological state in which there
is diminished capacity to control compulsive substance (such

as drugs) or non-substance (such as gambling, social media)
seeking, regardless of the risks and negative consequences
associated with this behavior (Hyman and Malenka, 2001). To
date, available treatments for addictive behaviors remain limited,
and especially the long-term success rates have been fairly poor
(O’Brien, 2011). For example, behavioral interventions, such
as cognitive-behavioral therapy, showed modest benefits (Dutra
et al., 2008), perhaps because many addicts have prefrontal cortex
damage that renders cognitive approaches as less efficacious
(Turel et al., 2014; He et al., 2017).

Given its potential capabilities, tDCS has attracted the interest
of therapists as a potential tool for reducing drug craving and
related addiction problem. Researchers have shown that repeated
tDCS could modulate cortical excitability and thereby improve
the neuronal activity of circuits associated with cognitive control
over drug craving, thus alleviating drug addiction problems.
Specifically, the dorsolateral prefrontal cortex (DLPFC) is
involved in inhibitory control and planning; it is therefore a
critical brain region for controlling compulsive drug-seeking and
avoiding relapse (Janes et al., 2012; Yuan et al., 2016). Studies have
suggested that enhanced activity in the DLPFC is associated with
reduced craving (McBride et al., 2006).

Several researchers have therefore examined the possibility
that the modulation effect of tDCS applied to the DLPFC helps
alleviating drug addiction problems. For example, Falcone et al.
(2016) investigated the effect of a single 20-min session of 1.0
mA anodal stimulation over the left DLPFC on 25 smokers.
They found that the stimulation could improve their ability
to resist smoking. Similarly, repeated anodal tDCS over the
left DLPFC could also effectively reduce craving and prevent
relapse in alcoholics and methamphetamine abusers (da Silva
et al., 2013; Shahbabaie et al., 2014; den Uyl et al., 2015), and
decrease risky choices in cocaine addicts (Gorini et al., 2014).
Nakamura-Palacios et al. (2016). It is suggested that this cognitive
improvement might be associated with ventromedial prefrontal
cortex (VMPFC) activation as modulated by the DLPFC activity
change that resulted from repetitive anodal tDCS. The indirect
modulation of VMPFC activity is therefore argued to be the
means through which tDCS produces better self-control in
addicts, improved decision making and reduced risk of relapse.

The bilateral frontal-parietal-temporal association area (FPT)
is another potential target of tDCS for treating addictions. For
example, Meng et al. (2014) examined the effects of inhibiting the
FPT on the attentional bias to smoking-related cues in smokers.
They found that low current bilateral cathodal stimulation of
the FPT attenuates smoking cue-related attention; it hence can
reduce desire to smoke in response to smoking cues in the
environment. Similarly, Wang et al. (2016) found that one single
tDCS session (1.5mA for 20min) over the bilateral FPT reduces
cue induced craving in heroin addicts.

These studies suggest that transient and repeated anodal tDCS
of DLPFC or cathodal over FTP could significantly improve the
ability to resist drug craving or directly reduce patients’ subjective
cravings. However, knowledge regarding the neural mechanisms
underlying such effects is still limited. Future studies should
either combine pharmacologic antagonists with tDCS or image
the brain before and after tDCS stimulation to better understand
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the neurochemical and neuro-network changes induced by tDCS
and its resultant therapeutic effects.

tDCS Use in Major Depressive Disorder
Treatment
Major depressive disorder (MDD) is a complex and
inhomogeneous mental disorder, which is characterized by
a pervasive and persistent lowmood and usually accompanied by
alterations of cortical excitability. The neural system hypothesis
suggests that depression is a disorder related to dysfunction
in structures implicated in the experience of emotions and the
processing of affective information and stimuli; these include
the dorsolateral and ventral prefrontal cortex, hippocampus and
amygdala (Hamilton et al., 2008).

Since tDCS can modulate cortical excitability for hours
after the stimulation, it was proposed that it might be a
promising option for treating depression patients, beyond the
use of psychotherapeutic interventions and pharmacotherapy.
Numerous neuropsychological studies have revealed that
stimulation of the DLPFC with tDCS can act in depression
patients via re-establishing the balance between left and right
prefrontal cortices, i.e., by enhancing the left hypoactive
DLPFC activity and reducing the excitability of the right
hyperactive DLPFC. For instance, Brunoni et al. (2014a) found
that one single active bi-frontal tDCS significantly modifies
negative attentional bias in MDD, which is consistent with the
conclusion of Wolkenstein and Plewnia (2013) that anodal
tDCS over the left DLPFC improved deficient cognitive control
in MDD.

Extending the single session effect, the long-term effect of
tDCS on MDD patients have also been established by Brunoni
et al. (2011a). They found that after 20 min, twice daily, 5-
day tDCS, depressive symptoms in all patients with MDD and
bipolar depressive disorder (BDD) diminished, and that the
beneficial effect persisted for 1 week and 1 month, respectively.
Furthermore, Rigonatti et al. (2008) compared the clinical
effects of PFC tDCS and the antidepressant fluoxetine in MDD
patients; they found that active tDCS and fluoxetine both reduced
depressive symptoms considerably.

Several less promising tDCS studies involving MDD patients
were also reported (Blumberger et al., 2012; Bennabi et al., 2015).
For examole, Blumberger et al. (2012) sought to characterize
the pattern of change in depressive symptomatology induces
by anodal tDCS to the left prefrontal cortex. Results showed
that tDCS did not induce clinically relevant antidepressant effect
in 24 treatment-resistant depressed patients. However, the low
efficacy demonstrated in these tDCS studies may be attributed
to the patients’ strong psychological resistance to treatment,
especially considering the fact that the same tDCS protocol
showed significant antidepressant efficacy in MDD patients with
low treatment resistance (Brunoni et al., 2011a, 2013, 2014b). It
was also demonstrated that moving the right frontal cathodal
electrode to an extra-cephalic position (e.g., right upper arm)
may result in a better therapeutic effect in treatment-resistant
patients (Martin et al., 2011). Thus, non-significant effects may
be due to boundary conditions of tDCS and montage choices.

Taken together, these results have clearly showed a potential
anti-depressive effect of prefrontal tDCS via altering the function
of emotion-related information processing circuits. Specifically,
the current approach is to enhance neural activity of left DLPFC
and/or reduce neural activity of right DLPFC via the two main
protocols of anodal tDCS over left DLPFC with the cathode over
right DLPFC or right OFC (Brunoni et al., 2012b). It should be
noted, however, that tDCS efficacy on specific symptom profiles
in pharmacotherapy-resistant depression is limited (Bennabi
et al., 2015), especially via the protocol of the left DLPFC anode
with right OFC cathode (Lefaucheur et al., 2017). Nevertheless,
such studies have noteworthy limitations, including relatively
small sample sizes, and future studies should focus on the
treatment effects of tDCS in larger and more representative
samples of MDD patients. There is still a long way to go in
the optimization of tDCS parameters in order to get better and
more consistent therapeutic effects; current studies in this area
fail to show that tDCS is a significantly better treatment than
pharmacotherapy in MDD cases. Examining these competing
(and possibly supplementary) approaches is a promising avenue
for future research.

tDCS Use in Alzheimer’s Disease Treatment
Alzheimer’s disease (AD) is a neurodegenerative and progressive
disease; it manifests through severe general cognitive decline in
memory, attention, language, and executive control functions.
Although in 2015 there were over 46.8 million people worldwide
who suffer from AD, much is still to be learned about the
neural underpinnings, pathogenesis and etiology of AD (Prince,
2015). The AD-Amyloid hypothesis provides an account for
one possible biological mechanism underlying AD development.
It proposes that the development of AD is driven by the
accumulation and deposition of extracellular amyloid beta
peptide aggregates in the brain and that such depositions can
trigger a cascade that harms neurons and synapses (Kung, 2012).
Another account from a neuropathology perspective, suggests
that AD is caused by loss of neurons and synapses in the cerebral
cortex and key regions for cognitive functioning, such as the
temporal lobe, parietal lobe, frontal lobe and cingulate gyrus
(Wenk, 2003). Attempts to treat AD with pharmacology have
so far produced limited effectiveness or controversial outcomes
(Nardone et al., 2011; Piau et al., 2011).

Non-pharmacological interventions, such as tDCS, have been
recently found to produce positive effects for the treatment of
older adults with memory decline or dementia (Elder and Taylor,
2014; Hsu et al., 2015). Moreover, researches have demonstrated
that the aging brain can still morph, reorganize and change
(Kuo et al., 2013; Gutchess, 2014). Hence, it is possible that
neuro-stimulation like this produced by tDCS could influence
ameliorate-specific parts of the brain, as well as the anti-
correlated functional networks of the brain in order to control
ameliorate effects (Li et al., 2003; Hui et al., 2009). Studies have
shown significant changes in brain activity in themedial temporal
lobes and temporoparietal cortex (TPC) during a memory task
in AD patients (Rémy et al., 2005). Consequently, several studies
explored the practical effects of tDCS on such regions in AD
patients (Ferrucci et al., 2008a; Boggio et al., 2009, 2012). For
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example, Ferrucci et al. (2008a) evaluated the effect of tDCS over
the temporopolar cortex (TPC) in 10 patients with AD. They
found that all patients after an active anodal tDCS over the TPC
area showed a significant improvement in recognition memory
performance rather than visual attention, suggesting that the
effects of tDCS over TPC were likely specific for recognition
memory. Similarly, Boggio et al. (2009) assessed 10 AD patients
with a memory recognition task using anodal tDCS over the
left temporal cortex and left DLPFC, respectively. They found
a significant positive effect of tDCS stimulation on short-term
memory (visual recognition memory). In addition, They further
examined the long-term effect of anodal tDCS over the temporal
cortex on a visual recognition memory task in 15 AD patients,
after five consecutive sessions. They found that AD patients’
performance on the visual recognition memory task improves
and that the improvement persists for at least 4 weeks after
therapy (Boggio et al., 2012).

Such cases have substantiated the positive effect of tDCS
stimulation on AD patients. They therefore suggest that tDCS
may be an alternative or supplementary therapeutic option for
AD patients. Later studies attempted to combine tDCS with
cognitive training (CT), trying to produce constant and long-
lasting curative effect. For instance, Penolazzi et al. (2015) tested
the cognitive effects of two cycles of tDCS with CT treatments
(Active tDCS + CT), 2 months apart. They found that the
“tDCS+ CT” could stabilize the global cognitive functioning for
approximately 3 months, longer than the effect produced by CT
only. Therefore, the synergetic use of tDCS and CT appeared
to slow down the cognitive decline in AD patient, which again
points to the potential value of tDCS as an adjuvant tool for
cognitive rehabilitation in AD patients.

Although the efficacy of tDCS over the temproal cortex in
improving recognition memory has been confirmed by several
studies, researches have tried to explore the possibility thet the
left DLPFC can be a potential stimulation target for ameliortaing
AD patients’ cognitive functions. For example, Khedr et al. (2014)
investigated the long-term efficacy of anodal tDCS over the left
DLPFC (2 mA, 25min, and 10 days) in the neurorehabilitation of
AD. The results showed that AD patients’ cognitive performance
significantly improved after either anodal or cathodal vs. sham
tDCS, with reduction of P300 latency as the objective biological
marker of AD. However, the same protocol (anodal tDCS over
the left DLPFC, 2mA, 25min) applied by Cotelli et al. (2014) and
Suemoto et al. (2014) showed negative results.

In summary, recent studies suggest a possible positive effect
of tDCS on cognitive functions in AD patients, especially
when the tDCS stimulation is combined with CT. Based on
current evidence, it seems that the left TPC/temporal cortex
may be a better target for tDCS stimulation compared to
the left DLPFC, especially when researchers aim at improving
AD patients’ cognition memory. Future research should pay
closer attention to the potential integration of tDCS with
traditional methods such as pharmacological treatment and
psychotherapy for improving cognitive rehabilitation in AD
patients. Moreover, ways for extending the tDCS effects should
be explored, because currently 1 month is the limit, and this
is too short for meaningful rehabilitation of AD patients.

Future studies should also try to understand the mechanisms
underlying long-term effects of tDCS, as tDCS might interact
with mechanisms involved in neurodegeneration with either
beneficial (delayed deterioration of cognition) or harmful effects
(accelerated cognitive deterioration) (Hansen, 2012).

tDCS Use in Treating Other Psychiatric
Disorders
tDCS has also been applied to treat many other psychiatric and
neurological disorders, beyond substance addiction, Alzheimer’s
disease and MDD. In the following paragraphs, we focus on
select recent tDCS-related trends and new directions in the fields
of ADHD (Sotnikova et al., 2017), schizophrenia (Pondé et al.,
2017), disorders of consciousness (Cavaliere et al., 2016) and
others.

ADHD

Attention deficit hyperactivity disorder (ADHD) is a persistent
pattern of inattention and/or hyperactivity-impulsivity that
interferes with functioning or development, has symptoms
present in two or more settings (e.g., at home, school,
or work; with friends or relatives; in other activities), and
directly negatively influences social, academic or occupational
functioning (American Psychiatric Association, 2013). The exact
pathophysiology of ADHD has been difficult to delineate
because of complicating factors such as evolving diagnostic
criteria, phenotypic heterogeneity, frequent comorbidities, and
environmental variables that may exacerbate or mimic symptoms
(Rubio et al., 2016). One of the most influential theories for
the neural basis of ADHD has focused on deficient inhibitory
control leading to executive dysfunction (Gilbert et al., 2011),
which has been proved to be linked to frontostriatal circuits,
specifically hypo-activity in the DLPFC, ventrolateral prefrontal
cortex, and the anterior cingulate cortex (Konrad et al., 2006).
Thus, some studies have investigated the theraputic effect of
tDCS over the DLPFC (Cosmo et al., 2015; Soltaninejad et al.,
2015; Bandeira et al., 2016; Sotnikova et al., 2017). Although,
several studies showed that tDCS over the left DLPFC of ADHD
patients can improve executive control functions (e.g., inhibitory
control, processing speed, working memory) and alleviate
ADHD symptoms (Soltaninejad et al., 2015; Bandeira et al., 2016;
Sotnikova et al., 2017), Cosmo et al. (2015) did not find significant
differences between active and sham bihemispheric tDCS of the
DLFPC in terms of improved inhibitory control.

Schizophrenia

Schizophrenia is a chronic mental disturbance characterized by
dysfunction in emotion, cognition, and perception of reality
(Kuo et al., 2014). Clinical features of schizophrenia include
psychotic/positive symptoms (e.g., hallucinations, delusions, and
disturbances of thought) and negative symptoms (e.g., emotional
dullness, anhedonia, alogia, or attention deficit). The primary
objective for tDCS in schizophrenia patients has been to
reduce auditory verbal hallucinations (AVH). Thus, left temporo-
parietal junction (TPJ) may be a promising cathodal target
(Brunelin et al., 2012). On the other hand, numerous studies
have revealed that the impaired frontal cortical activity may
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underlie the cognitive dysfunction in schizophrenia. Given the
pivotal role of the DLPFC in mediating a wide range of executive
functions (Niendam et al., 2012), this region can be the anodal
region of interest. For example, Brunelin et al. (2012) showed
a significant reduction of AVHs and positive and negative
symptoms following active tDCS (anode: the left DLPFC;
cathode: left TPJ) compared to sham condition. This is similar to
the conclusion ofMondino et al. (2015, 2016), who found that the
functional connectivity of left TPJ with the left angular gyrus, the
left DLPFC and the precuneus increased following active tDCS.
These regions are involved in the language-related and self-other
recognition network (Mondino et al., 2014).

Disorders of Consciousness

The neural basis, clinical recognition, and long-term outcome
of disorders of consciousness (DOC), such as coma, minimally
conscious state (MCS) and vegetative state (VS), remain
poorly understood (Giacino et al., 2014). Although peripheral
treatments (e.g., physical therapy, speech therapy) and many
potential pharmacological interventions have been evaluated in
recent years, there is still no unanimously accepted evidence-
based treatment guidelines for DOC patients (Gosseries et al.,
2011). Some studies explored the potential of tDCS to improve
the patients’ consciousness. Thibaut et al. (2014) found that
tDCS over left DLPF cortex may transiently improve signs of
consciousness inMCS, but not VS patients following severe brain
damage, which is similar to Angelakis et al. (2014). Moreover,
electrophysiological evidence revealed that tDCS can effectively
modulate the cortical excitability of patients with DOC. They
further revealed that the changes in excitability in temporal
anspatial domains are different between patients with MCS
and those with VS (Bai et al., 2017). However, Estraneo et al.
(2017) found that repeated tDCS did not exert remarkable short-
term clinical and EEG effects in patients with prolonged DOC.
In conclusion, some beneficial results of tDCS protocols have
been demonstrated in DOC patients, especially targeting the left
DLPFC in MCS. However, the reported studies are preliminary,
were based on small samples, and used heterogeneous outcome
measures, including either clinical or functional connectivity
variables (Lefaucheur et al., 2017). Hence, further studies should
examine the long-term therapeutic effects of tDCS over the left
DLPFC in DOC patients.

POSSIBLE ADVERSE EFFECTS AND
SAFETY PROCEDURES

Possible Detrimental Effect of tDCS
Although tDCS has been recognized widely as a safe brain
stimulation technique, there are still some potential detrimental
effects worthy of mentioning and considering. First, researchers
and therapists should pay attention to skin lesions that usually
occur under the anodal or cathodal electrodes in patients after
treatment with tDCS. Specifically, the skin temperature increase
under the electrodes and chemical reactions in the interface of
the skin and electrodes might cause skin lesion. These lesions
may be associated with several factors. Specifically, the degree
of skin lesions was found to be positively related to stimulation

intensity, skin impedance (Palm et al., 2008), duration of
stimulation, accumulation of electrochemically produced toxins,
and the dissolution products of the sponges (Frank et al., 2010).
This happens, in part, because skin impedance can change as
a function of current intensity, density of stimulations and
stimulation duration (Kalia and Guy, 1995; Prausnitz, 1996).
It was also suggested that electrode impedance might change
depending on the dynamic electrochemical processes as well as
the stimulation waveform and time (Prausnitz, 1996; Merrill
et al., 2005;Minhas et al., 2010). Therefore, to use tDCS safely, the
stimulation voltage should be adjusted to maintain the desired
current magnitude across variable impedances.

Second, in addition to skin lesions, it is also worth mentioning
that tDCS can be associated with a few mild adverse effects,
such as mild tingling, mild pain, and transient redness (Iyer
et al., 2005; Fregni et al., 2006c; Poreisz et al., 2007; Plazier
et al., 2012). Such adverse effects have been observed under
various tDCS montages and protocols and over different cortical
areas in healthy participants, as well as in patients with various
neurological disorders (Poreisz et al., 2007). For example, a recent
study investigated the prevalence of side-effects in a cohort of 102
subjects with a total of 567 tDCS sessions (1 mA). The results
showed that side effects can include a mild tingling sensation
(70.6%), moderate fatigue (35.3%), a light itching sensation
(30.4%), headache (11.8%), nausea (2.9%), and insomnia (0.98%)
(Poreisz et al., 2007). However, these side effects seem to be safe,
transient and could be tolerated well by most subjects (Nitsche
et al., 2008; Loo et al., 2009; Miranda et al., 2009; DaSilva et al.,
2011).

Recommended Safety Procedures
In order to ensure that participants undergo safe tDCS
stimulation, several procedures are recommended. First,
researchers and therapists should have proper exclusion criteria,
such as the presence of metallic implants in the skull or brain
and skin diseases (Utz et al., 2010). Second, subjects’ skin should
be lightly cleaned with a swab, and researchers and therapists
should avoid abrading the skin because eroded skin is prone to
induce skin lesions. The static impedance of the skin should also
be measured, and stimulation should not be carried out unless
impedance levels are within limits according to the tDCS device
manufacturer.

Third, electrode sponges should be soaked with saline solution
to minimize skin resistance and ensured that the contact with
the skin is sufficiently firm. Fourth, constant current strength
should be provided by the stimulation device. A safety current
density limit of 0.029–0.142 mA/cm2 (Poreisz et al., 2007)
as well as a maximum charge density of 40 µC/cm2 at the
stimulating electrode (Yuen et al., 1981; Agnew and McCreery,
1987) are suggested for a safely delivered tDCS. Fifth, for repeated
applications of tDCS, a sufficiently large interval between sessions
is suggested in order to avoid undesirable cumulative effects. The
interval is determined by the stimulation purpose and procedure.
Most importantly, the experimenter or therapist should be well
prepared and oversee the whole procedure, especially when
examining children and patients. Lastly, all other safety measures
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suggested by the device manufacturers and/or the lab should be
followed.

Compared to adults, children’s or adolescents’ brains are
still developing, and hence are prone to relatively stronger
neural plasticity. Therefore, tDCS in children may theoretically
lead to some unexpected or even dangerous results, such as
brain tissue lesions and cognitive impairment. As such, it has
been recommended that brain stimulation for pure cognitive
enhancement should be delayed until the patient has reached
the state of intellectual maturity (Maslen et al., 2015). However,
since tDCS can produce positive results in various psychiatric
patients, the use of tDCS among children and adolescents who
need treatment has been explored (Fiocchi et al., 2016; Gschwind
and Seeck, 2016; Muszkat et al., 2016; Palm et al., 2016).

The most important issue to be considered when
administrating tDCS in children is the dosage. While tDCS
is widely used in adults, the dosage of tDCS administration
in children is poorly understood. It is still unknown whether
stimulation parameters used in adults are also suitable for
children to achieve similar results (i.e., safety and efficacy
concerns; Kessler et al., 2013). Several studies tried to explore
the safety of tDCS in children with neurological or psychiatric
disorders. For instance, Auvichayapat et al. (2013) examined the
seizure reduction effects as well as the safety of tDCS in children
with refractory epilepsy. Results showed that tDCS could
decrease the frequency of seizure. Based on this, they argued
that tDCS, if used for short periods was safe for children with
epilepsy (1 session of 1 mA cathodal tDCS for 20min, 35 cm2).
Similarly, Mattai et al. (2011) explored the safety and tolerability
of tDCS in children with childhood-onset schizophrenia and
found that the children tolerated tDCS well with no serious side
effects (10 sessions of 2 mA tDCS for 20min, 25 cm2). Moreover,
Pinchuk et al. (2012) found significant improvement of higher
cognitive functions when stimulating children with psychic
development disorders (5–9 session of 0.06–0.12 mA, 25–45min,
2.5–6.25 cm2). Specifically, verbal functions improvement was
observed in 80% of the children, and writing mistakes were
reduced 3-fold in patients with dysgraphia.

It should be noted that the above results primarily focus on
childhood neurological or psychiatric disorders. To date, the
safety procedures for, and adverse effects of tDCS in healthy
children still requires further research.

TDCS COMBINED WITH OTHER
TECHNIQUES

tDCS and MRI
Combining magnetic resonance imaging (MRI) with concurrent
tDCS allows for a non-invasive examination of tDCS-induced
effects throughout the brain. However, the potential risks and
technical issues caused by wires and electrodes within the MRI
scanner should be noted. They are similar to those discussed
regarding electroencephalography (EEG) concurrent recording
within the MRI. Undesired coupling of the tDCS wires and
the MRI transmission coil could burn the skin as well as
distort flip angles. Nevertheless, with specially manufactured

MR-compatible electrodes, there is a growing body of evidence
indicating that specific tDCS tools can be safely and effectively
used in the MR environment. For instance, Kwon et al. (2008)
demonstrated the modulation effect of tDCS on the primary
motor cortex by functional MRI. Similarly, Antal et al. (2011)
explored the online effects of short periods of tDCS on the brain
activity as well as the associated hemodynamics by concurrent
BOLD fMRI. No distortion, signs of elevated flip angles, or signal
loss of the brain images near the electrodes were evident in their
study, and no brain signal changes were observed when turning
the direct current stimulation on and off (Zheng et al., 2011).
This suggests that the combination of tDCS and functional MRI
could be applied as a safe method, even in a 3TMR environment;
though caution regarding such a combination should be applied
in future applications.

tDCS and TMS
tDCS may be more valuable if combined with other neuro-
modulatory approaches such as TMS.With respect to tDCS-TMS
studies, Lang et al. (2004) reported that a priming effect occurred
when tDCS was followed by repetitive TMS. In this study,
100 stimuli of 5Hz were employed in a repetitive TMS procedure,
after an anodal, cathodal or sham tDCS was applied to left M1 for
10min. The study found that cathodal and anodal tDCS increases
and decreases the subsequent effects on corticospinal excitability,
independently. Similar priming effects occurred when tDCS was
followed by repetitive TMS (Siebner et al., 2004; Cosentino et al.,
2012; Moloney and Witney, 2013). Furthermore, no adverse
effects on neuropsychological function was found after repeated
sessions of combined tDCS-rTMS stimulation (Loo et al., 2009).
Thus, it appears that tDCS-TMS studies are safe, but the lead-lag
effects of one on the other require attention and caution.

HD-TDCS
High-Definition tDCS (HD-tDCS) is a newly developed
technique using configurations of smaller, specially designed
electrodes to improve the spatial focality of tDCS (Minhas
et al., 2010). Various configurations of HD-tDCS have been
proposed; these can be modified to improve the spatial focality
of the stimulated brain regions. HD-tDCS uses deployments of
specialized compact scalp electrodes to pass currents without
inducing skin irritation and with minimal discomfort (Lang
et al., 2005). Several clinical studies have been conducted in
healthy subjects, as well as in patients to investigate its safety
and efficacy. For instance, Borckardt et al. (2012) evaluated
whether HD-tDCS over the motor cortex would reduce pain
and sensory experience with the 4 × 1 ring deployment. They
found that real HD-tDCS can decrease the heat and cold sensory
thresholds and the thermal wind-up pain. They also observed a
marginal analgesic effect for cold pain thresholds. In addition,
Villamar et al. (2013) examined the HD-tDCS effects on overall
perceived pain in fibromyalgia patients using the 4 × 1 ring
configuration. They found that, compared to sham stimulation,
both the anodal and cathodal stimulation led to significant
decrease in overall perceived pain. He et al. (2016) used similar
HD-tDCS configurations to investigate the effects of left and right
DLPFC on risky decision making, and found that stimulating the
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left but not the right DLPFC showed higher performance in the
Iowa Gambling task and lower delay discounting rate in healthy
male participants. The reported effects of HD-tDCS were mild
tingling or itching during both real and sham stimulation, which
typically faded away after a few minutes. Hence, HD-tDCS seems
to be as safe as tDCS, but future research is needed to further
establish its efficacy and safety.

FUTURE DIRECTIONS

To date, based on the available evidence, tDCS can be treated as a
relatively safe and portable brain activity modulation technology.
It has been recognized as an effective neuromodulation tool for
the treatment of neuropsychiatric disorders and for improving
cognitive functioning in healthy subjects. No hard evidence that
tDCS can damage brain tissue or impair cognitive functions
has been produced. However, many challenges for the clinical
practice of tDCS still need to be overcome and require further
studies. For example, the effect of prolonged or repeated exposure
to tDCS should be investigated in longitudinal designs. The
possibility that the excitability of cortical neurons could be
modulated by tDCS on a long-term basis should be studied
(Mattai et al., 2011). Researchers should also explore and verify
the long-term morphological changes or behavioral alterations
after tDCS. Brain development of children is associated with
intensive plasticity as well as other processes such as synaptic
pruning. Therefore, researchers should investigate the long-term
behavioral, brain structural and functional changes associated
with tDCS in children and adolescents, which may provide
valuable information for evaluating the therapeutic effectiveness
of the stimulation protocol and its possible side effects (Kadosh
et al., 2012).

Another important issue for future research is the
mechanisms of action of tDCS. These mechanisms may
have considerable significance for future clinical studies.
Specifically, the mechanisms possibly involve various synaptic
and non-synaptic effects on neurons, and non-neuronal cells
and tissues of the central nervous system (Brunoni et al., 2012a),
and these may shed light on the efficacy of combining tDCS
with other therapeutic approaches, such as pharmacology. A
better understanding of the tDCS mechanisms of action is also
important for improving the clinical safety and efficacy of tDCS.

This improved understanding can be achieved by studying the
brain mechanisms through combined techniques such as TMS,
EEG, and fMRI. In addition, to increase the understanding of
the biological and physiological etiology of tDCS stimulation
effects, more elaborated experimental studies may be warranted
in future, including animal studies in vivo. These can be
useful, because critical mechanistic insights could be obtained
from animal studies examining different tDCS montages or
investigating other outcomes which could not be done in human,
such as studies exploring the expression of neurotransmitter
receptors. Such studies would facilitate translational tDCS
research and have potential clinical implications (Brunoni et al.,
2012a). Furthermore, these future animal studies might possibly
open the door for certain biomarkers such as endophenotypes
(Hasan et al., 2013).

Researchers should also attempt understanding the optimal
treatment “dose” in tDCS. The concept “dose” of tDCS was first
introduced by Nitsche and Paulus (2000). Nowadays, tDCS is
known for its flexibility to have various dose options. At the
same time, various dose options also make the optimal choice
hard to ascertain. Cortical regions exposed to higher doses of
tDCS may be more likely to be modulated. However, other
less controllable factors such as skin and skull resistance may
also have an influence on the amount of current that effectively
reaches neuronal tissue. Current amount and delivery would
be also modulated for patients with skull defects and brain
lesions among other conditions. Hence, subjects with different
conditions may get non-uniform effect by the same amount of
current (Brunoni et al., 2012a). Future studies should investigate
these factors and find the optimal doses and delivery approaches
for safe and efficacious treatment among different populations of
subjects.

Moreover, it should be noted that tDCS is not a catholicon
of psychiatric diseases, even though it offers promising and
exciting possibilities for treatment development. Given that
multiple factors may influence the final clinical efficacy of
tDCS in psychological and neurological disorders, further studies
should focus on individual differences (e.g., psychological states,
treatment resistance, and illness severity) in the specific disorder.
As mentioned above, the degree of treatment resistance may
hinder the therapeutic effect of tDCS in MDD (Mondino et al.,
2014), and the illness severity can be an indication of therapeutic
effect of tDCS in DOC patients (Angelakis et al., 2014; Thibaut
et al., 2014); Psychological states of participants at the time of
stimulation may also disturb the clinical outcomes. For example,
tDCS will intensify but weaken addicts’ cravings when the drug-
related cues are present (Shahbabaie et al., 2014).

In addition, further studies should focus on study design
and its crucial role in establishing and determining treatment
outcomes of tDCS. The majority of studies with negative results
were randomized controlled trials, which raises the possibility of
a placebo effect. That is, sham tDCS may exert some degree of
influence over outcomes (Kekic et al., 2016).

Lastly, it is interesting to consider the possibility of expanding
the use of tDCS as an investigative tool for studying decision
making in normal subjects, as well as in subjects with sub-
clinical conditions. Since tDCS can manipulate the activity of
brain regions involved in risk assessment, reflection and decision
making (e.g., the insular cortex and/or DLPFC), it can be used
for obtaining new insights in various branches of decision
neuroscience, such as in neuro-marketing, neuro-information
systems (Neuro-IS) and neuro-finance. In such research areas,
the use of tDCS can help researchers pinpoint the neural regions
that are involved in decisionmaking tasks and how changes to the
activation of these regions improves or impairs various decision
making facets.
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