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It has been shown that reward motivation can facilitate proactive control, a cognitive
control mode that is characterized of prior preparation and sustained holding of the
goal-relevant information in working memory. However, it remains to be established
the neural networks that may be involved in this promotion effect. In this study,
participants underwent the AX-Continuous Performance Task (AX-CPT) that measures
relative proactive control during functional magnetic resonance imaging (fMRI) scanning.
We employed independent component analysis to decompose multiple brain networks
and identified the task related network. Results showed that the salience network (SN)
was engaged in the AX-CPT protocol. Importantly, our data demonstrated that reward
modulated the association between task engagement of SN and proactive control,
whereby the positive correlation was particularly observed in the reward condition.
Moreover, reward modulated task engagement of the SN in a proactive manner, which
may contribute to the behavioral proactive performance. Overall, our data suggest the
involvement of SN in the reward facilitation effect of proactive control.

Keywords: dual-mechanism of control, independent component analysis, AX-Continuous Performance Task,
salience network, proactive control, reactive control, reward

INTRODUCTION

Cognitive control is defined as a set of processes that allow individuals to flexibly coordinate
thoughts and behaviors in accordance with internal goals (Miller and Cohen, 2001). It has been
widely studied how cognitive control influences our behavior and daily life. Among these studies,
a theoretical framework—the dual-mechanism of control (DMC) theory—postulates that there
are two distinct cognitive modes in cognitive processing, namely, reactive control and proactive
control (Braver et al., 2007; Braver, 2012). In reactive control, task-relevant information (e.g., task
instructions, goals, stimulus-response mapping) is processed in a transient manner (Braver, 2012).
Reactive control is helpful to detect and resolve interference only when an interference occurs; thus,
attention is recruited as a late correction mechanism. Meanwhile, in proactive control, task-relevant
information is actively maintained in working memory to direct attention and possible responses.
Proactive control is a sustained form of control, which can be engaged prior to the presentation
of stimuli and can promote rapid and efficient responses (Jaspar et al., 2014; Chiew and Braver,
2016).
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Previous studies have suggested that reward motivation
can facilitate goal-directed behavior via the adoption of an
optimal cognitive strategy (Pochon et al., 2002; Gilbert and
Fiez, 2004; Taylor et al., 2004; Small et al., 2005; Fröber and
Dreisbach, 2014; Etzel et al., 2015). Indeed, the DMC theory
proposes that reward motivation can reliably enhance a proactive
control mode relative to reactive control. For instance, Locke
and Braver (2008) compared reward and penalty effects on
strategy transformation between proactive and reactive control.
Results demonstrated that reward condition showed sustained
activity of proactive control, whereby the penalty condition
produced a shift toward a more reactive, probe-based pattern
of activation. Jimura et al. (2010) also found that reward can
promote proactive control, and that individuals with high reward
sensitivity exhibited better working memory performance in
rewarding contexts.

In the context of motivation and cognitive control, it is
interesting to investigate how the brain networks may interact
to support the motivational effects in control (Botvinick and
Braver, 2015). Although the literature supports the idea that
reward motivation can promote a proactive mode of cognitive
control, little is known about the activity of neural networks that
may underlie this process. A network perspective may provide
insights of the synchronized brain activity and the dynamic
information changes between brain regions that support the
cognitive control modes (Papo et al., 2014). According to the
literature, it is hypothesized that the fronto-parietal network
(FPN) and/or the salience network (SN) would be involved in the
incentive enhancement of proactive control as of their extensive
involvement in reward and cognitive control.

The FPN, mainly composed of the lateral prefrontal cortex
(lateral PFC) and the posterior parietal cortex (PPC), plays
an important role in both cognitive control and reward. The
FPN is engaged in various cognitive tasks in which cognitive
control is needed to guide selective attention (Dosenbach et al.,
2007, 2008; Cole et al., 2013). Meanwhile, reward motivation
has been reported to enhance task coding in fronto-parietal
cortex. Specifically, the authors trained a multi-voxel classifier in
baseline session and used this classifier to distinguish different
task sets in a reward session. They found that the classification
accuracy was higher in reward trials than non-reward trials
in fronto-parietal regions, and that the enhancement of the
decoding accuracy mediated the improvement of behavioral
performance (Etzel et al., 2015). Importantly, it has been
suggested that the lateral PFC also plays an important role in the
motivation-based enhancement of proactive control, in which
proactive control was associated with sustained activity of the
lateral PFC (Locke and Braver, 2008; Costumero et al., 2015).

Similarly, the SN is also involved in both cognitive control and
reward. The SN is known to support the detection of behaviorally
relevant stimuli (Uddin, 2014; Dajani and Uddin, 2015), the
maintenance and implementation of task sets (Dosenbach et al.,
2006; Nelson et al., 2010), and the organization of behavioral
responses (Medford and Critchley, 2010). Moreover, the SN
can initiate cognitive functions by sending control signals to
other large-scale networks that are associated with the allocation
of attention and working memory resources (Menon, 2011).

Meanwhile, the amygdala and the substantia nigra/ventral
tegmental area (SNc/VTA), two subcortical structures of the SN,
are involved in detecting emotional and reward saliency (Seeley
et al., 2007; Menon, 2011).

In summary, this study aimed to examine the role of
the synchronizing activity in the FPN and/or SN in the
motivation-based facilitation of proactive control. To this end,
we hypothesized that these two networks would show the
following features: (1) FPN/SN may be engaged in the proactive
control task (i.e., AX-Continuous Performance Task, AX-CPT)
whereby the activity of these two network is associated with
the task phase and task performance; (2) task engagement of
FPN/SN may be associated with proactive control index which
was measured by the relative performance of BX and AY
trials; and (3) reward may modulate the association between
FPN/SN engagement and proactive control. Specifically, we
assumed that reward might promote the relationship between
FPN/SN engagement and proactive control. Moreover, previous
studies have suggested that the effect of reward motivation on
cognitive control can be reflected in the interaction between
two large-scale brain networks. These include one brain network
representing the reward value and another performing specific
cognitive functions (Botvinick and Braver, 2015). Based on the
proposed functioning of SN (i.e., detection of reward saliency
and translation of control signals to other brain networks) and
FPN (i.e., motivation-based enhancement of proactive control),
we propose that SN activity may represent the reward value and
signal FPN to implement specific control functions. We therefore
hypothesized that: (1) reward may modulate the relationship
between SN and FPN activity (or connectivity between these
two networks), making them more correlated in the reward
condition; and (2) FPN activation may mediate the positive
relationship between SN activity and proactive control. That is,
SN activity may enhance the activation of the FPN, which in turn
promotes proactive control.

MATERIALS AND METHODS

Participants
Twenty-four right-handed, healthy young adults participated
in this study. All of them had normal or corrected-to-normal
vision, and none of them had a history of neurological or
psychiatric illness. Two volunteers were excluded, as they did
not complete the testing. In addition, another two subjects
were excluded as their overall head motion was above 2 mm
in translation or 2◦ in rotation during scanning. In total, 20
subjects were included in the subsequent analysis, which consists
of nine females (mean = 21.7 years, SD = 1.8) and 11 males
(mean = 21.6 years, SD = 1.4). The study was approved by the
Southwest University Brain Imaging Center Institutional Review
Board. All subjects gave written informed consent in accordance
with the Declaration of Helsinki.

Task and Procedure
Participants performed the reward version of the AX-CPT in a
block design. The AX-CPT has been widely used to investigate
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the dynamic changes between proactive and reactive control
(Braver, 2012). In the classical AX-CPT, participants need to
respond to a probe (X/Y) which follows a cue (A/B). ‘‘B’’
represents any non-A letters and ‘‘Y’’ stands for any non-X
letters. Only the A-cue followed by the X-probe requires a
target response, whereas all other combinations (A-Y, B-X,
B-Y) require a non-target response. In this study, the cue
letter was either A or B, and the probe letter was either X
or Y. Participants were asked to respond to the target (AX
combination) with the right index finger, and respond to the
non-target with the left index finger (AY, BX, BY). Because the
A-X combination occurs at a high frequency (70%), both the
A-cue and the X-probe could produce high target response bias.
However, the inconsistent response tendency between the cue
and the probe in the A-Y and the B-X combinations would
cause interference, participants thus need to switch between
proactive and reactive control strategies to achieve better task
performance. Specifically, a proactive control strategy helps
resolve the conflict in the B-X combination, but a reactive
control strategy is useful for resolving the interference in the
A-Y combination (Locke and Braver, 2008; Chatham et al.,
2009). Thus, task performance in the AY and BX trials can be
considered as an index of the reactive and proactive control
strategy respectively. Here, we calculated proactive control index
for both RT and error rate using the behavioral shift index
(BSI: [AY − BX]/[AY + BX]), which measures to what extent
subjects tend to adopt the proactive control strategy (Paxton
et al., 2006, 2008; Chiew and Braver, 2014). A smaller value
of this index means less proactive and more reactive control,
while a larger value means more proactive and less reactive
control (Lamm et al., 2013; Zhang et al., 2015; Maraver et al.,
2016).

In the reward context, participants were informed that they
would be rewarded for their quick and correct response if the
prime stimulus of that trial is ‘‘$$$,’’ but not if the prime is ‘‘###.’’
In the baseline context, neither incentives nor the meaning of
the motivation cues were provided. Thus, the feedback ‘‘+50’’
was only presented in the reward context which means that
participants would receive 50 cents, and ‘‘+--’’ was presented in
both the reward and baseline context indicating that no reward
was provided. There were two runs, i.e., a baseline and a reward
run in the task, and each run has three blocks. The baseline run
was followed by the reward run. The sequence was fixed because
reward was only provided if the response in the reward block
was correct and faster than the average reaction time (RT) in
the baseline block (Locke and Braver, 2008; Chiew and Braver,
2013). Each block included 40 trials, with 28 AX trials (70%),
4 AY trials (10%), 4 BX trials (10%) and 4 BY trials (10%).
These trials were presented in a pseudorandom order and each
block lasted for 9 min. A 10-s rest was set at the beginning
of the experiment, and the imaging data in this period were
abandoned so that the scanner could reach a steady state. One
practice block was conducted before the actual testing. The actual
task started if the accuracy in the practice block reached at
least 90%.

An illustration of the task is provided in Figure 1. The letters
of the cue and target stimuli were presented at the center of

the screen in sequence in 36-point size, Times New Roman
font. A random jitter (fixation, 2 s, 4 s, or 6 s) was set for
the inter-trial interval (ITI). Then a reward symbol (‘‘$$$’’ or
‘‘###’’) and the following mask were presented for 300 ms. Next,
a random jitter fixation screen (300 ms, 600 ms, or 900 ms)
was shown before the cue screen (300 ms), followed by a delay
period (4,700 ms), a target screen (300 ms) and a blank screen
for response (1,700 ms). The timing for response was fixed to
2,000 ms and not terminated by a response. Then, a feedback with
the following mask screen (300 ms) were displayed. In the end of
each trial, a reminder for the next trial ‘‘Next!’’ was presented for
300 ms.

fMRI Data Collection
All functional magnetic resonance imaging (fMRI) were collected
on a Siemens 3T Trio scanner (Siemens Medical Systems,
Erlangen, Germany). A foam pad was used to minimize the
subjects’ head motion. fMRI images were acquired by using
the gradient-echo echo planar imaging (GRE-EPI) sequence:
TR/TE = 2,000 ms/30 ms; flip angle = 90◦; resolution
matrix = 64× 64; FOV = 220× 220 mm2; thickness = 4 mm; and
acquisition voxel size = 3.4 × 3.4 × 4 mm3. We used 32 slices to
cover the entire brain.

Data Preprocessing
fMRI data were preprocessed using statistical parametric
mapping 8 (SPM8, Welcome Trust Centre for Neuroimaging,
London, UK1) implemented on a MATLAB 2009b (Math
Works, Natick, MA, USA) platform. For each block, the first
5 functional volumes were discarded. The remaining scans
were slice-time corrected and subsequently realigned to the first
image to correct for head motion. Subsequently, all realigned
images were spatially normalized to the Montreal Neurological
Institute (MNI) template and resampled into 3 × 3 × 3 mm3.
Thereafter, the images were smoothed with a 6 mm full-width at
half-maximum (FWHM) Gaussian kernel to increase the signal-
to-noise ratio (SNR).

Behavioral Data Analysis
We first calculated the relative proactive control index for
both RT and error rate using the formula [(AY − BX)/(AY +
BX)] (Paxton et al., 2006, 2008; Chiew and Braver, 2014). This
proactive index is a standardized measure that ranges from−1 to
+1. There were three levels of incentive in this study, namely,
the baseline trials, non-incentive trials in the reward context and
incentive trials in the reward context. To examine the reward
effect on proactive control, baseline trials and incentive trials in
the reward block were examined with paired sample t-tests. The
ANOVA analysis between reward prime (### vs. $$$) and block
(baseline vs. reward block) was not presented here as we were
not interested in the main or the interaction effect between these
two variable. Moreover, we did not find any significant result
of the main or the interaction effect between reward prime and
block.

1http://www.fil.ion.ucl.ac.uk/spm
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FIGURE 1 | Experimental design of this study. In the scanner, the participants performed a block designed AX-Continuous Performance Task (AX-CPT). There are
two runs in the task (a baseline and a reward run), and each run has three blocks (40 trials in each block). The baseline run was followed by the reward run. (A) Single
trial for the baseline context. (B) Single trial for the reward context.

Independent Component Analysis of fMRI
Data
Functional imaging data can be decomposed to brain networks
using independent component analysis (ICA), which has been
increasingly applied to task-fMRI data (Xu et al., 2013a,
2016; Yip et al., 2018). ICA is a data-driven method to
characterize the temporal coherence of neural activities and
functional integration of neural networks (Meda et al., 2012;
Smith et al., 2012). Meanwhile, cognitive task performance
involves the recruitment of multiple brain regions, it is
plausible that reward may modulate the functional integration
between these various task related networks, rather than a
single region. Moreover, ICA is sensitive to neural activity
patterns that may not be detected by traditional whole-brain
analysis based on general linear model (GLM), which has been
suggested to be able to provide supplementary information
to GLM-based methods (Xu et al., 2016; Yip et al., 2018).
Furthermore, in this study, we are interested in understanding
the functional synchronization (connectivity) of the brain
regions or networks, which provides a context for ICA to
fit in.

ICA was performed using the MATLAB platform group
ICA toolbox (GIFT2, version 3.0a), which can identify spatially

2http://icatb.sourceforge.net

independent and temporally coherent networks. Preprocessed
fMRI data were submitted to principal component analysis to
reduce the dimensions for each subject. Then group spatial ICA
was conducted with the Infomax algorithm (Bell and Sejnowski,
1995), and the number of component in our data was estimated
to be 24 using minimum description length criteria in the
software (Li et al., 2007). Group spatial ICA generates spatial
maps and time series of bold signals for each component. The
spatial maps characterize the brain regions included in the
network, with values in these maps representing the temporal
synchronization between the time series of a given voxel and
a given network, reflecting how strongly each voxel is coupled
with a given network (Allen et al., 2012). Each subject’s time
courses and spatial maps were then back-reconstructed by using
the data from the data reduction procedure. In total, 24 spatial
maps and related time series were produced for each participant.
We can carry out group-level random effect hypothesis tests
to compare individual differences or condition differences in
each spatial map or component time series. The analysis of
spatial maps allows us to compare the group difference in the
intensity of functional connectivity, while the analysis of the
temporal process information enables us to judge whether the
participants engaged in the fMRI task or not (Meda et al.,
2009).

In the context of task-fMRI, some components may reflect
networks that are helpful in performing tasks, while other
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components may represent unrelated intrinsically connected
networks or spatiotemporal sources of noise (Hallquist et al.,
2018). To identify the task-related network, we performed
regression analysis between component time series and stimulus
events convolved with a canonical hemodynamic response
function (HRF), which is usually applied in ICA of task-fMRI
data (e.g., Zhang and Li, 2012). Similar to conventional voxel
wise GLM analyses, the resulting regression coefficients (beta
values) represent the influence (correlation) of the stimulus on
BOLD activity (Kim et al., 2009). The main difference between
ICA and single voxel analysis is that component time courses
represent a group of temporally coherent activities in functional
coupling regions. Therefore, like voxel wise GLM regression
coefficient, the correlation between component time courses and
task phase reflects both the intensity of task-related network
activity and the temporal accordance of the network to stimulus
presentation (Hallquist et al., 2018). Thus, an increase or decrease
in regression coefficient (beta values) in one condition relative
to another represents an increase or decrease in the task-related
activity of the corresponding network (Xu et al., 2013b).

Identification of the Task Related Network
We first examined if the FPN/SN activation is associated with
the task phase of the AX-CPT as well as the task performance.
Three separate boxcar regressors were first defined by a train

of cue onsets with a duration of 6 s (form cue onset to the
blank screen waiting for response to include 3TR), representing
all trials (including AX, AY, BX, BY), AY trials and BX trials,
respectively (Figure 2). These regressors were then convolved
with a canonical HRF. Temporal regression was then performed
between the time courses of the 24 components and three task
regressors. By doing this we can estimate the association (beta
weights) between the component time series and the three task
regressors. The beta values represent the degree of synchrony
between the components’ time courses and the task phase, which
indicates whether the network was engaged during this task
(Meda et al., 2009). An increase or decrease in beta values in one
condition relative to another represents an increase or decrease in
the task-related activity of the corresponding network (Xu et al.,
2013b). We first visually checked the most correlated network,
than we performed a spatial correlation between a predefined
SN mask3 (Shirer et al., 2012) and the identified components.
This template included the main SN regions such as the bilateral
anterior insula (AIns) and the dorsal anterior cingulate (dACC;
Seeley et al., 2007). To further examine whether or not FPN and
SN are involved in the task, we calculated the correlation between
network activity (beta values) and behavioral performance for
both RT and ACC, separately.

3http://findlab.stanford.edu/functional_ROIs.html

FIGURE 2 | Three regression factors for the task in the study. Three independent boxcar-shaped regression factors were set up. These three sequences represent
the regression factors for (A) all trials (including AX, AY, BX, BY), (B) AY trials and (C) BX trials. The three sequences were convolved with statistical parametric
mapping’s (SPM’s) hemodynamic response function (HRF) to form the final task sequence.
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The Association Among Reward, AY/BX
Engagement of the Salience Network and
Proactive Control
Since we found SN but not FPN is involved in the task, the
following analysis was only performed on the SN. We first
calculated the association between AY/BX engagement of the SN
and proactive control, with the assumption that SN engagement
in AY/BX trials may predict the behavioral proactive control
index. Considering that better performance on BX trials indicates
proactive control, and that better performance on AY trials
indicates reactive control (Chatham et al., 2009), higher level of
BX-AY engagement would be associated with better proactive
control.

Subsequently, we explored whether reward could modulate
the association between AY/BX engagement of the SN and
proactive control. To this end, the correlation coefficients
between BX-AY engagement of the SN and proactive control of
the baseline and reward condition were calculated, respectively.
Then, Fisher’s r-to-z transformation was performed to increase
the normality of the correlation coefficients. Finally, z values of
correlation coefficients were subjected to significant tests.

The Correlation Among Reward, Trial
Types and AY/BX Engagement of the
Salience Network
We further explored why reward might modulate the association
between AY/BX engagement of the SN and proactive control.
As the relationship between BX-AY engagement of the SN and
proactive control might be greater in the reward condition,
we assumed that reward might enhance task engagement of
SN proactively. In other words, compared to baseline, reward
might enhance BX engagement more than AY engagement of
the SN. This proactive neural network engagement may support
the behavioral proactive performance. We thus submitted the
AY/BX engagements to repeated measure ANOVA with trial

types (AY vs. BX) and reward (reward vs. baseline) as within-
subject factors to determine if the interaction between trial types
and reward is significant.

RESULTS

Behavioral Results
To validate the effect that reward can modulate proactive control,
a paired sample t-test was performed to compare the proactive
control of baseline trials with incentive trials in reward block.
Results revealed that incentive trials in reward block showed
higher proactive control for both RT (t(19) = 2.44, p = 0.02) and
error rate (t(19) = 3.07, p = 0.01; Figure 3). This result is consistent
with previous studies showing that reward can facilitate proactive
control (Locke and Braver, 2008; Jimura et al., 2010; but see
Boehler et al., 2014).

The Salience Network Is Engaged in the
AX-CPT
Visual inspection suggested that the most positively correlated
network with the task was SN (t(19) = 10.73, p = 1.67 × 10−9).
Regions, T values, and MNI coordinates of this network
were listed in Table 1. Spatial correlation results confirmed

TABLE 1 | Regions of the salience network (SN) that are correlated with the task
phase of AX-CPT.

Regions Voxels (n) T MNI coordinates

x y z

SMA/dACC 721 10.8 9 8 49
L. AIns 137 8.1 −30 23 4
R. AIns 170 10.8 36 17 4
L. MFG 121 6.8 −30 50 19
R. MFG 103 5.8 30 50 25

Corrected at p < 0.01. AX-CPT, AX-Continuous Performance Task; SMA,
supplementary motor area; dACC, dorsal anterior cingulate; AIns, anterior insula;
MFG, middle frontal gyrus; L, Left; R, right.

FIGURE 3 | Proactive control index ([AY − BX]/[AY + BX]) in baseline and reward block (reward trials in the incentive block) for reaction time (RT; A) and error rate (B).
The horizontal axis denotes different conditions (baseline vs. reward) and the vertical axis represents the magnitude of proactive control (error bars denote standard
errors). ∗ Indicates p < 0.05.
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the relationship in which this component showed the highest
positive spatial correlation with the SN template (0.57). We also
submitted a FPN template4 for spatial correlation and identified
the component that showed the highest spatial correlation (0.45).
However, this component was not correlated with the task
(p > 0.1).

Among the 24 components, we found that SN activity is
associated with the AX-CPT task. One-sample t-tests were
applied to the beta values of the SN to verify that the SN time
series was significantly (t(19) = 10.73, p = 1.67× 10−9) associated
with the task course and was thus task-engaged (Figure 4). To be
more confirmative, the correlations between the task engagement
of the SN and the behavioral data (RT and error rate) were
examined. A more task-engaged SN was associated with a faster
RT (r(18) = −0.55, p = 0.02; Figure 5) but not for error rate
(r(18) = −0.36, p = 0.12), which indicates that the SN is involved
in the AX-CPT task. The deeper SN engaged in the task, the
faster RT would show. Meanwhile, the activity of FPN was not
correlated with either RT (r(18) = −0.07, p = 0.078) or error
rate (r(18) = −0.004, p = 0.99). To avoid possible false positive
results, multiple comparison correction was applied to our results
by setting false discovery rate (FDR) to <0.05 (Benjamini and
Hochberg, 1995; Benjamini and Yekutieli, 2001).

Reward Enhances the Correlation Between
AY/BX Engagement of the Salience
Network, and Proactive Control
The correlation between BX-AY engagement of the SN and
proactive control index for both RT and error rate were
calculated, respectively. We found that BX-AY engagement of
the SN, which may reflect the level that SN is proactively
engaged, is positively associated with proactive control index
for RT (r(18) = 0.43, p = 0.056), but not for error rate
(r(18) = 0.24, p = 0.32). Greater difference between BX and

4http://findlab.stanford.edu/functional_ROIs.html

AY engagement was associated with better proactive control.
Further analysis revealed that this positive correlation was
only present in the reward condition (r(18) = 0.51, p = 0.02),
but not for the baseline (r(18) = 0.08, p = 0.75). Moreover,
the difference between these two correlation coefficients was
significant (Z = 5.9, p = 1.79 × 10−9; Figure 6A). Thus,
reward enhanced the correlation between BX-AY engagement
of the SN and proactive control, making them positively
correlated.

FIGURE 5 | Task engagement (activity) of SN was negatively associated with
reaction time (r(18) = −0.55, p = 0.02). The horizontal and vertical values
represent standardized z-scores. Thus, a more task-engaged SN would show
a faster reaction. SN, salience network.

FIGURE 4 | Spatial map for the component that was most correlated with the task. One sample t-test was performed for this spatial map (corrected for multiple
comparisons with the FDR, p < 0.01). See Table 1 for specific regions, T values and montreal neurological institute (MNI) coordinates. This component showed the
highest positive spatial correlation (0.57) with an SN template. FDR, false discovery rate; SN, salience network.
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FIGURE 6 | Relationship among reward motivation, task engagement of SN and proactive control. (A) Compared to the baseline, reward motivation increased the
association between task engagement (activity) of SN (BX-AY) and proactive control. Before the comparison, Fisher’s r-to-z transformation was performed to
increase the normality of the correlation coefficients, and z values of correlation coefficients were subjected to paired sample t-test (baseline vs. reward). The
horizontal and vertical values represent standardized z-scores. (B) The interaction between reward and trial types was significant, suggesting reward differentially
influenced the SN engagement for AY and BX trials (error bars denote standard errors). SN, salience network.

Reward Modulate the AY/BX Engagement
of the Salience Network
The ANOVA for the AY/BX engagement of the SN found a
significant main effect of reward (F(1,19) = 5.66, p = 0.021;
Figure 6B). SN engagement was higher for the AY and BX trials
in the reward condition than in the no-reward condition. The
effect of trial type was not significant (F(1,19) = 2.5, p = 0.12).
Importantly, the interaction between reward and trial types was
significant (F(1,19) = 4.61, p = 0.036), that is, reward can promote
significantly greater task engagement of SN in trials that need
proactive control (BX trials) than trials that need reactive control
(AY trials). Thus, reward might enhance task engagement of SN
proactively, and this proactive neural network engagement might
support the behavioral proactive performance.

DISCUSSION

The present study investigated the relationship among reward,
task engagement of the SN, and proactive control. Consistent
with previous studies (Locke and Braver, 2008; Jimura et al.,
2010), our results demonstrated that reward motivation could
enhance the proactive mode of cognitive control. We further
found that the SN is involved in the AX-CPT task, in which
the time series of SN is positively correlated with task regressor,
and that the task engagement of SN is positively associated with
behavioral performance. Interestingly, our data demonstrated
that reward could modulate the association between the SN
engagement and proactive control whereby the SN engagement
is positively associated with proactive control particularly in
the reward condition. Furthermore, we found a significant
interaction effect between reward and trial types, indicating

that reward enhances greater task engagement of SN in trials
that need proactive control (BX trials) than trials that need
reactive control (AY trials). However, it is possible that the
different responses between A and B cue may account for some
of the results. Therefore, it is purposed that the SN network
may be more engaged in B cue compared to A cue, suggesting
increased utilization of contextual cues (proactive control) as B
cues are 100% valid for preparing a non-target response (Braem
et al., 2014; Fröber and Dreisbach, 2014; Hefer and Dreisbach,
2017).

We explored the control mode shift (tendency) toward
relative proactive control, as indicated by the BSI ([AY −
BX]/[AY + BX]). A smaller value of this index means less
proactive and more reactive control, while a larger value means
more proactive and less reactive control (Lamm et al., 2013;
Zhang et al., 2015; Maraver et al., 2016). In this regard, we
assume that reward may decrease reactive control, since task
performance in AY and BX trials can be considered as an
index of the reactive and proactive control strategy, respectively
(Braver et al., 2009; Polizzotto et al., 2018). Therefore, higher
value of the BSI in the reward condition would also imply
relatively lower reactive control in AX-CPT. It is reported that
reward can enhance the task coding (Etzel et al., 2015), increase
the maintenance of goal-relevant information (Zedelius et al.,
2011), and promote cognitive stability (Fröber and Dreisbach,
2016; Hefer and Dreisbach, 2016, 2017; Fröber et al., 2018). In
the reward condition of AX-CPT, the coding (representation)
of A/B-cue and the corresponding response tendencies may
be increased, which was also more stably maintained in the
following period until response was made. Therefore, the
A-cue would induce and stably maintain a stronger target
response tendency, which would decrease the flexibility and
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detrimental for AY trials (non-target). While the B-cue would
induce and stably maintain a stronger non-target response
tendency, which is beneficial for BX trials (non-target; Hefer
and Dreisbach, 2017; Yee and Braver, 2018). Thus, reward
may increase proactive control and decrease reactive control
in AX-CPT.

In this study, we found that the SN activity is associated
with the AX-CPT task. SN is widely involved in cognitive
control processes, e.g., conflict monitoring (Kerns et al., 2004),
salience processing (Seeley et al., 2007), interference resolution
(Nee et al., 2007), the maintenance and implementation of
task sets (Dosenbach et al., 2006; Nelson et al., 2010), and the
organization of behavioral responses (Medford and Critchley,
2010). Individuals need to flexibly adjust the proactive and
reactive control strategies to solve the conflict in AY and
BX trials in this protocol. Moreover, each trial type of AY,
BX and BY only covers 10% of all trials. Thus, these trials
may be considered as salience or oddball stimuli. In addition,
the delay period between the cue and the probe requires the
maintenance of goal-related information in working memory.
In this regard, it is not surprising that the SN is engaged in
AX-CPT, which could measure relative proactive control. The
higher activation of the SN in the task, the better the task
performance.

Our data demonstrated that reward could modulate the
association between the SN engagement and proactive control.
Previous studies have shown that SN is involved in reward-
based decision making (Kennerley et al., 2011; Botvinick and
Braver, 2015). Moreover, dACC, a core node of SN, plays
a key role in the association between reward and cognitive
control. Specifically, the expected values of control are suggested
to be computed in the dACC, which then selects appropriate
control functions based on the expected values. These cognitive
controls are subsequently implemented in the sub-regions of the
lateral PFC (Shenhav et al., 2013, 2016). Moreover, the SN is
structurally connected with the subcortical and limbic structures
such as the amygdala and SNc/VTA, which are involved in the
processing of reward and motivation (Menon and Uddin, 2010;
García-García et al., 2013). Importantly, SN includes regions
(e.g., dACC and AIns) that are responsive for interoceptive-
autonomic, conflict monitoring and reward-processing (Seeley
et al., 2007). Information from these regions may thus be
integrated by SN to relay the signal to other brain regions or
organize a response. Therefore, reward motivation in this study
may result in enhanced reward coding in the SN, which is
associated with relatively more proactive control.

Importantly, our data demonstrated that reward could
modulate the AY/BX engagement of the SN proactively, resulting
in greater improvement of BX engagement than AY engagement.
This neural modulation of the SN activity may account for
the behavioral proactive performance after reward, since both
ACC and the dopamine (DA; a neurotransmitter that is
important for reward, motivation and cognitive control function)
system can link reward with cognitive control (Botvinick and
Braver, 2015; Westbrook and Braver, 2016). Moreover, phasic
activity of DA neurons was found in response to reward cues
(Schultz, 1998), while tonic DA release was associated with

sustained motivational behaviors (Howe et al., 2013). In fact, the
phasic and tonic DA signals not only support the processing of
reward and motivational information (Niv, 2007), but are also
involved in the modulation of proactive control (Cohen et al.,
2002). Thus, it may be the case that reward increases the striatal
DA release, which then modulates task engagement of the SN
and promotes the persistence cognitive control (Westbrook and
Braver, 2016).

Surprisingly, we found that the FPN is not involved in
the task. It seems counter-intuitive since lateral PFC as one
of the core regions of FPN has been commonly activated in
motivation–cognitive control interaction studies (e.g., Bahlmann
et al., 2015). However, it is possible that a single region (lateral
PFC) may not be sufficient to represent FPN, as part of the lateral
PFC may also belong to SN. The SN identified in this study
includes portion of the lateral PFC, though the core regions of SN
were AIns and dACC (Figure 4 and Table 1). Therefore, SN but
not FPN in our result may be compatible with previous studies. It
has been suggested that BOLD signal in the SN comes earlier than
the FPN, and that activity of the SN may modulate FPN activity.
For instance, a number of studies suggested that the SN plays
a causal role in the switching between the FPN and the default
mode network (e.g., Sridharan et al., 2008; Goulden et al., 2014).
The dACC as a key node in SN was also found to signal the
FPN node (dorsolateral PFC) for top-down control (Botvinick
et al., 2001; Kerns et al., 2004; Liston et al., 2006). Therefore,
SN activation may be necessary to initiate the functioning of the
FPN. In line with this idea, prior studies have indicated that the
AIns (one core region of the SN) contributes to the generation
of control signals that are critical for the ‘‘stable maintenance of
task mode and strategy’’ (Dosenbach et al., 2007). Menon and
Uddin (2010) further assumed that the AIns is involved in the
detection of salient stimuli. When a salient stimulus is detected,
the AIns initiates control signals that are then sustained by the
ACC and the lateral PFC. Similarly, it is proposed that cognitive
control includes three major components, namely, monitoring,
specification and regulation (Shenhav et al., 2013, 2016). The
dACC monitors the current circumstances and notifies the lateral
PFC which task should be undertaken, while the lateral PFC
has the capacity to conduct or regulate lower-level information
processing (Shenhav et al., 2013, 2016). It is therefore possible
that the SN activation in our data may reflect the process of
salience monitoring and task specification, while the lateral PFC
activity in previous studies is more likely to be associated with the
regulation component of cognitive control.

There are other possibilities with regard to the findings
of the FPN in this study. We examined this issue from a
network perspective, which is different from previous studies
that investigated the activations of specific brain regions.
Furthermore, ICA was employed in this study to dissociate
multiple components. Although most component maps from
group ICAs are stable, there are still subtle differences in spatial
extent of these components each time ICA is applied (Beall
and Lowe, 2010). Therefore, the FPN identified by ICA in this
study may be subject to the random covariate. Moreover, the
trial number is relatively small, resulting to a relatively low
SNR. Whether FPN as a network involved in the incentive
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enhancement of proactive control therefore remains to be
established in future studies.

LIMITATION

As the order of baseline and reward blocks is fixed, it is possible
that the block-based results are confounded by the practice effect.
However, this is not necessarily the case here since previous
studies did not find practice effect in block-based reward studies
(Chiew and Braver, 2013). Moreover, we performed a control
analysis and did not find any practice effect in our study.
Specifically, a series of paired sample t-tests were performed
including the comparison between the first and the second block
(40 trials) in baseline (RT: t(19) = 0.53, p = 0.6; error rate:
t(19) = 0.94, p = 0.36), between the first and the last block in
baseline (RT: t(19) = −0.29, p = 0.78; error rate: t(19) = 1.29,
p = 0.21), and between the first half and the last half of trials in
the baseline (RT: t(19) = 0.09, p = 0.93; error rate: t(19) = 1.25,
p = 0.23). Nevertheless, this issue should be further examined in
future studies with careful experimental designs.

Note that previous studies commonly explored the reward
effect by comparing non-incentive trials in the reward block to
baseline trials (sustained effect), and incentive trials in the reward
block to non-incentive trials in the reward block (transient;
Chiew and Braver, 2013, 2014). In this study, we compared
incentive trials in the reward block and baseline trials because
the aim of this study was not to dissociate the sustained (block-
based) and the transient (trial-based) reward effect. We were
interested in the reward facilitation effect of proactive control,
and the incentive trials in the reward block have the highest
motivation level. Moreover, the number of each trial type was
not balanced because of the feature of this reward version
AX-CPT (i.e., the number of incentive and non-incentive trials
are determined by task performance). This is consistent with the
previous studies (close to 1:4 for the number of non-incentive
trials compared to that of the baseline trials; Chiew and Braver,
2013, 2014). It would be inappropriate for the neural data to
compute the association between network activities and the task
phase, as the unbalanced trial number may elicit unstable and
inaccurate results (Nasr et al., 2008; Cohen, 2017; Hall et al.,
2018). Furthermore, we reanalyzed our data by comparing the
reward block to the baseline block (Locke and Braver, 2008), and
our results were consistent. A potentially larger trial number or
an unequal number of trials for baseline and reward block (e.g.,

1:2, to achieve an approximately equal or close trial number of
baseline, non-incentive and incentive trials) may be examined in
future studies.

We used the same B/Y letters in our study, which may
have some influence on our results. To date, AX-CPT has been
modified into various versions including emotional AX-CPT
(Lamm et al., 2013), No-Go AX-CPT (Gonthier et al., 2016),
child-friendly version of the AX-CPT (Kamijo and Masaki,
2016), reward AX-CPT (Chiew and Braver, 2014), and etc. There
is also a simplified version of the AX-CPT with four stimuli (two
cue and two probe stimuli) that is similar to the task used in
this study (Chatham et al., 2009). Moreover, previous studies
also used the same B/Y letters to explore reactive and proactive
control (e.g., Chang et al., 2017), and the association among
monetary incentive, social pressure and reactive/proactive
control (e.g., Lǐcen et al., 2016). However, future studies
employing different B/Y letters would be encouraged.

In summary, we explored the brain networks that may be
involved in the reward facilitation effect of proactive control.
We found that the SN was engaged in the AX-CPT task,
and this engagement was positively associated with proactive
control particularly in the reward condition. Meanwhile, reward
could modulate the AY and BX engagement of the SN in a
proactive way. It is possible that this proactive neural modulation
supports the enhancement of behavioral proactive control after
reward. Our finding suggest that reward may moderate the
relationship between task engagement of the SN and proactive
control. Findings in this study may provide insights of the neural
networks supporting the reward-related promotion of proactive
control.
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